【題目】選修4-4:坐標(biāo)系與參數(shù)方程:在直角坐標(biāo)系中,曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程;
(2)已知點(diǎn),直線的極坐標(biāo)方程為,它與曲線的交點(diǎn)為,,與曲線的交點(diǎn)為,求的面積.
【答案】(1)(2)
【解析】
(1)首先把參數(shù)方程轉(zhuǎn)化為普通方程,利用普通方程與極坐標(biāo)方程互化的公式即可得到曲線的極坐標(biāo)方程;
(2)分別聯(lián)立與的極坐標(biāo)方程、與的極坐標(biāo)方程,得到、兩點(diǎn)的極坐標(biāo),即可求出的長,再計算出到直線的距離,由此即可得到的面積。
解:(1),
其普通方程為,化為極坐標(biāo)方程為
(2)聯(lián)立與的極坐標(biāo)方程:,解得點(diǎn)極坐標(biāo)為
聯(lián)立與的極坐標(biāo)方程:,解得點(diǎn)極坐標(biāo)為,所以,又點(diǎn)到直線的距離,
故的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,平面外一點(diǎn)在平內(nèi)的射影恰在邊的中點(diǎn)上,.
(1)求證:平面平面;
(2)若在線段上,且平面,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,,且對任意,都有.
(1)計算,,,由此推測的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明;
(2)若(),求無窮數(shù)列的前項(xiàng)之和與的最大項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機(jī)公司生產(chǎn)某款手機(jī),如果年返修率不超過千分之一,則生產(chǎn)部門當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司2010-2018年的相關(guān)數(shù)據(jù)如下表所示:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生產(chǎn)量(萬臺) | 3 | 4 | 5 | 6 | 7 | 7 | 9 | 10 | 12 |
產(chǎn)品年利潤(千萬元) | 3.6 | 4.1 | 4.4 | 5.2 | 6.2 | 7.8 | 7.5 | 7.9 | 9.1 |
年返修量(臺) | 47 | 42 | 48 | 50 | 92 | 83 | 72 | 87 | 90 |
(1)從該公司2010-2018年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),以表示3年中生產(chǎn)部門獲得考核優(yōu)秀的次數(shù),求的分布列和數(shù)學(xué)期望;
(2)根據(jù)散點(diǎn)圖發(fā)現(xiàn)2015年數(shù)據(jù)偏差較大,如果去掉該年的數(shù)據(jù),試用剩下的數(shù)據(jù)求出年利潤(千萬元)關(guān)于年生產(chǎn)量(萬臺)的線性回歸方程(精確到0.01).部分計算結(jié)果:,,.
附:;線性回歸方程中,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】伴隨著科技的迅速發(fā)展,國民對“5G”一詞越來越熟悉,“5G”全稱是第五代移動電話行動通信標(biāo)準(zhǔn),也稱第五代移動通信技術(shù)。2017年12月10日,工信部正式對外公布,已向中國電倌、中國移動、中國聯(lián)通發(fā)放了5G系統(tǒng)中低頻率使用許可。2019年2月18日上海虹橋火車站正式啟動5G網(wǎng)絡(luò)建設(shè)。為了了解某市市民對“5G”的關(guān)注情況,通過問卷調(diào)查等方式研究市民對該市300萬人口進(jìn)行統(tǒng)計分析,數(shù)據(jù)分析結(jié)果顯示:約60%的市民“掌握一定5G知識(即問卷調(diào)查分?jǐn)?shù)在80分以上)”將這部分市民稱為“5G愛好者”。某機(jī)構(gòu)在“5G愛好者”中隨機(jī)抽取了年齡在15-45歲之間的100人按照年齡分布(如圖所示),其分組區(qū)間為:,,,,,.
(1)求頻率直方圖中的a的值;
(2)估計全市居民中35歲以上的“5G愛好者”的人數(shù);
(3)若該市政府制定政策:按照年齡從小到大,選拔45%的“5G愛好者”進(jìn)行5G的專業(yè)知識深度培養(yǎng),將當(dāng)選者稱成按照上述政策及頻率分布直方圖,估計該市“5G達(dá)人”的年齡上限.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為F,過點(diǎn)的直線l與E交于A,B兩點(diǎn).當(dāng)l過點(diǎn)F時,直線l的斜率為,當(dāng)l的斜率不存在時,.
(1)求橢圓E的方程.
(2)以AB為直徑的圓是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線:(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線:.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若曲線與交于,兩點(diǎn),,的中點(diǎn)為,點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人民生活水平的日益提高,某小區(qū)居民擁有私家車的數(shù)量與日俱增.由于該小區(qū)建成時間較早,沒有配套建造地下停車場,小區(qū)內(nèi)無序停放的車輛造成了交通的擁堵.該小區(qū)的物業(yè)公司統(tǒng)計了近五年小區(qū)登記在冊的私家車數(shù)量(累計值,如124表示2016年小區(qū)登記在冊的所有車輛數(shù),其余意義相同),得到如下數(shù)據(jù):
編號 | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
數(shù)量(單位:輛) | 34 | 95 | 124 | 181 | 216 |
(1)若私家車的數(shù)量與年份編號滿足線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測2020年該小區(qū)的私家車數(shù)量;
(2)小區(qū)于2018年底完成了基礎(chǔ)設(shè)施改造,劃設(shè)了120個停車位,為解決小區(qū)車輛亂停亂放的問題,加強(qiáng)小區(qū)管理,物業(yè)公司決定禁止無車位的車輛進(jìn)入小區(qū),由于車位有限,物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競拍的方式將車位對業(yè)主出租,租期一年,競拍方案如下:
①截至2018年已登記在冊的私家車業(yè)主擁有競拍資格;
②每車至多申請一個車位,由車主在競拍網(wǎng)站上提出申請并給出自己的報價;
③根據(jù)物價部門的規(guī)定,競價不得超過1200元;
④申請階段截止后,將所有申請的業(yè)主報價自高到低排列,排在前120位的業(yè)主以其報價成交;
⑤若最后出現(xiàn)并列的報價,則以提出申請的時間在前的業(yè)主成交,為預(yù)測本:次競拍的成交最低價,物業(yè)公司隨機(jī)抽取了有競拍資格的40位業(yè)主進(jìn)行競拍意向的調(diào)查,統(tǒng)計了他們的擬報競價,得到如下頻率分布直方圖:
(。┣笏槿〉臉I(yè)主中有意向競拍報價不低于1000元的人數(shù);
(ⅱ)如果所有符合條件的車主均參與競拍,利用樣木估計總體的思想,請你據(jù)此預(yù)測至少需要報價多少元才能競拍車位成功?(精確到整數(shù))
參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為: ,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com