13.已知集合$A=\{x|a-1<x<3a+2\},B=\{x|\frac{1}{4}<{2^{x-1}}<4\}$.
(Ⅰ)若a=1,求A∩B;
(Ⅱ)若A∩B=∅,求實(shí)數(shù)a的取值范圍.

分析 (Ⅰ)把a(bǔ)=1代入A中不等式,求出解集確定出A,求出B中不等式的解集確定出B,找出兩集合的交集即可;
(Ⅱ)由A與B的交集為空集,分A為空集及不為空集兩種情況求出a的范圍即可.

解答 解:(Ⅰ)當(dāng)a=1時,A={x|0<x<5},
由$\frac{1}{4}$<2x-1<4,得-2<x-1<2,
解得:-1<x<3,
∴B={x|-1<x<3},
則A∩B={x|0<x<3};
(Ⅱ)若A=∅,則a-1≥3a+2,解得:a≤-$\frac{3}{2}$;
若A≠∅,則a>-$\frac{3}{2}$,由A∩B=∅,得到a-1≥3或3a+2≤-1,
解得:-$\frac{3}{2}$<a≤-1或a≥4,
綜上,實(shí)數(shù)a的取值范圍是{x|x≤-1或x≥4}.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.寫出命題”已知$\overrightarrow{a}$=(1.2),存在$\overrightarrow$=(x,1)使$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$平行”的否定,判斷其真假并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.一個圓錐的側(cè)面展開圖是圓心角為$\frac{4π}{3}$,半徑為6cm的扇形,則此圓錐的體積為$\frac{16\sqrt{5}π}{3}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)a,b為實(shí)數(shù),若復(fù)數(shù)$\frac{1+2i}{a+bi}=1+i$,則a-b=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知k,b∈R,則一次函數(shù)y=kx+b與反比例函數(shù)$y=\frac{kb}{x}$在同一坐標(biāo)系中的圖象可以是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知點(diǎn)P是邊長為4的正三角形ABC的邊BC上的中點(diǎn),則$\overrightarrow{AP}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)=24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.集合{0,2,4}的真子集個數(shù)為7個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=|loga|x-1||(a>0,a≠1),若x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則 $\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$+$\frac{1}{{x}_{3}}$+$\frac{1}{{x}_{4}}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=$\sqrt{{x}^{2}-x-2}$的單調(diào)遞增區(qū)間為(  )
A.[2,+∞)B.(-∞,$\frac{1}{2}$]C.[$\frac{1}{2}$,+∞)D.(-∞,-1]

查看答案和解析>>

同步練習(xí)冊答案