【題目】已知, 是拋物線上兩點(diǎn),且與兩點(diǎn)橫坐標(biāo)之和為3.
(1)求直線的斜率;
(2)若直線,直線與拋物線相切于點(diǎn),且,求方程.
【答案】(1)直線的斜率為;(2)方程為.
【解析】試題分析:(1)根據(jù)已知條件,設(shè)直線AB的解析式為y=kx+t,聯(lián)立直線和拋物線的解析式,利用A與B的橫坐標(biāo)之和為3,結(jié)合一元二次方程的根與系數(shù)的關(guān)系求出k的值;
(2)設(shè)出過(guò)點(diǎn)M的切線方程,由切線與曲線只有一個(gè)交點(diǎn),確定點(diǎn)M的坐標(biāo);再利用AM⊥BM可得kAM·kBM=-1,將相應(yīng)的值代入,再結(jié)合根與系數(shù)的關(guān)系進(jìn)行計(jì)算,求出b即可得到答案.
試題解析:(1)設(shè)方程為,則由,得,
時(shí),設(shè), ,則,
又,∴,即直線的斜率為.
(2)∵,∴可設(shè)方程為,∴,得,
∵是切線,∴,∴,∴,
∴, ,∴,
∵,∴,
又, , , ,
又, ,∴, ,∴或,
又,∴方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,側(cè)棱垂直于底面, , , 是棱的中點(diǎn).
(Ⅰ)證明:平面⊥平面;
(Ⅱ)求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)
(1)設(shè)函數(shù),且函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù),求當(dāng)時(shí),函數(shù)的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校要召開(kāi)學(xué)生代表大會(huì),規(guī)定各班每10人推選一名代表,當(dāng)各班人數(shù)除以10的余數(shù)大于6時(shí)再增選一名代表.那么,各班可推選代表人數(shù)y與該班人數(shù)x之間的函數(shù)關(guān)系用取整函數(shù)y=[x]([x]表示不大于x的最大整數(shù))可以表示為( )
A. y= B. y= C. y= D. y=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐中, , 為的中點(diǎn), 平面,垂足落在線段上,已知.
(1)證明: ;
(2)在線段上是否存在一點(diǎn),使得二面角為直二面角?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(x∈R)(其中A>0,ω>0,0<φ<)的周期為π,且圖象上一個(gè)最低點(diǎn)為M(,﹣2)
(1)求f(x)的解析式
(2)求f(x)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為偶函數(shù),且當(dāng)時(shí),.記.給出下列關(guān)于函數(shù)的說(shuō)法:①當(dāng)時(shí),;②函數(shù)為奇函數(shù);③函數(shù)在上為增函數(shù);④函數(shù)的最小值為,無(wú)最大值. 其中正確的是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形與正三角形的邊長(zhǎng)均為,它們所在平面互相垂直, 平面,且.
()求證:平面平面.
()若,求幾何體的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com