【題目】已知函數(shù)f(x)=Asin(ωx+φ)(x∈R)(其中A>0,ω>0,0<φ<)的周期為π,且圖象上一個最低點為M(,﹣2)
(1)求f(x)的解析式
(2)求f(x)的單調(diào)增區(qū)間.
【答案】(1);(2)
【解析】
(1)由圖象上一個最低點為,可得,由周期,可得,由在圖象上,得,又,可解得,從而可求的解析式;(2)由,可解得的單調(diào)增區(qū)間.
(1)由圖象上一個最低點為M(,﹣2),可得A=2
由周期T=π,可得ω=,
∴f(x)=2sin(2x+φ)
由點M(,﹣2)在圖象上,得2sin(2×+φ)=﹣2,
即有sin(+φ)=﹣1,
∴+φ=﹣(k∈Z),
∴φ=﹣(k∈Z),
∵0<φ<
∴k=1,φ=,
∴f(x)的解析式為:f(x)=2sin(2x+)
(2)由﹣2x+≤,(k∈Z)
可解得:≤x≤(k∈Z),
可得f(x)的單調(diào)增區(qū)間為: (k∈Z)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中, ,斜邊AB=4,D是AB中點,現(xiàn)將Rt△AOB以直角邊AO為軸旋轉(zhuǎn)一周得到一個圓錐,點C為圓錐底面圓周上一點,且∠BOC=90°,
(1)求圓錐的側(cè)面積;
(2)求直線CD與平面BOC所成的角的大;(用反三角函數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為,對任意都有,且當(dāng)時, .
(1)試判斷的單調(diào)性,并證明;
(2)若,
①求的值;
②求實數(shù)的取值范圍,使得方程有負(fù)實數(shù)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, 是拋物線上兩點,且與兩點橫坐標(biāo)之和為3.
(1)求直線的斜率;
(2)若直線,直線與拋物線相切于點,且,求方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時, f(x)=-x+1
(1)求f(0),f(2);
(2)求函數(shù)f(x)的解析式;
(3)若f(a-1)<3,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】聯(lián)合國教科文組織規(guī)定,每年的4月23日是“世界讀書日”.某校研究生學(xué)習(xí)小組為了解本校學(xué)生的閱讀情況,隨機調(diào)查了本校400名學(xué)生在這一天的閱讀時間(單位:分鐘),將時間數(shù)據(jù)分成5組:,并整理得到如下頻率分布直方圖.
(1)求的值;
(2)試估計該學(xué)校所有學(xué)生在這一天的平均閱讀時間;
(3)若用分層抽樣的方法從這400名學(xué)生中抽取50人參加交流會,則在閱讀時間為的兩組中分別抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),給出下列命題:①必是偶函數(shù);②當(dāng)時,的圖像關(guān)于直線對稱;③若,則在區(qū)間上是增函數(shù);④若,在區(qū)間上有最大值. 其中正確的命題序號是:( )
A. ③ B. ②③ C. ③④ D. ①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com