【題目】已知函數(shù)f(x)=Asin(ωx+φ)(xR)(其中A>0,ω>0,0<φ<)的周期為π,且圖象上一個最低點為M(,﹣2)

(1)求f(x)的解析式

(2)求f(x)的單調(diào)增區(qū)間.

【答案】(1);(2)

【解析】

(1)由圖象上一個最低點為,可得,由周期可得,在圖象上,得,,可解得,從而可求的解析式;(2),可解得的單調(diào)增區(qū)間.

(1)由圖象上一個最低點為M(,﹣2),可得A=2

由周期T=π,可得ω=,

∴f(x)=2sin(2x+φ)

由點M(,﹣2)在圖象上,得2sin(2×+φ)=﹣2,

即有sin(+φ)=﹣1,

+φ=﹣(k∈Z),

∴φ=﹣(k∈Z),

∵0<φ<

∴k=1,φ=,

f(x)的解析式為:f(x)=2sin(2x+

(2)由﹣2x+,(k∈Z)

可解得:≤x≤(k∈Z),

可得f(x)的單調(diào)增區(qū)間為: (k∈Z)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△AOB中, ,斜邊AB=4,D是AB中點,現(xiàn)將Rt△AOB以直角邊AO為軸旋轉(zhuǎn)一周得到一個圓錐,點C為圓錐底面圓周上一點,且∠BOC=90°,
(1)求圓錐的側(cè)面積;
(2)求直線CD與平面BOC所成的角的大;(用反三角函數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為,對任意都有,且當(dāng)時, .

(1)試判斷的單調(diào)性,并證明;

(2),

①求的值;

②求實數(shù)的取值范圍,使得方程有負(fù)實數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 是拋物線上兩點,且兩點橫坐標(biāo)之和為3.

(1)求直線的斜率;

(2)若直線,直線與拋物線相切于點,且,求方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時, f(x)=-x+1

(1)求f(0),f(2);

(2)求函數(shù)f(x)的解析式;

(3)若f(a-1)<3,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】聯(lián)合國教科文組織規(guī)定,每年的4月23日是“世界讀書日”.某校研究生學(xué)習(xí)小組為了解本校學(xué)生的閱讀情況,隨機調(diào)查了本校400名學(xué)生在這一天的閱讀時間(單位:分鐘),將時間數(shù)據(jù)分成5組:,并整理得到如下頻率分布直方圖.

(1)求的值;

(2)試估計該學(xué)校所有學(xué)生在這一天的平均閱讀時間;

(3)若用分層抽樣的方法從這400名學(xué)生中抽取50人參加交流會,則在閱讀時間為的兩組中分別抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的k值為(

A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),給出下列命題:①必是偶函數(shù);②當(dāng)時,的圖像關(guān)于直線對稱;③若,則在區(qū)間上是增函數(shù);④若,在區(qū)間有最大值. 其中正確的命題序號是:( )

A. B. ②③ C. ③④ D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案