設(shè)集合I={1,2,3,…,n} (n∈N,n≥2),構(gòu)造I的兩個(gè)非空子集A,B,使得B中最小的數(shù)大于A中最大的數(shù),則這樣的構(gòu)造方法共有
 
種.
考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題
專題:計(jì)算題,排列組合
分析:由題意得:a1=0,a2=
C
2
2
=1,當(dāng)n≥2時(shí),an=
C
2
n
+2
C
3
n
+3
C
4
n
+…+(n-1)
C
n
n
,由此能求出an=n2n-1-2n+1(n∈N+).
解答: 解:記不同的選擇方法種數(shù)為an,由題意得:a1=0,a2=
C
2
2
=1
當(dāng)n≥2時(shí),an=
C
2
n
+2
C
3
n
+3
C
4
n
+…+(n-1)
C
n
n

=(2
C
2
n
+3
C
3
n
+4
C
4
n
+…+n
C
n
n
)-(
C
2
n
+
C
3
n
+
C
4
n
+…+
C
n
n

=n2n-1-(2n-1)=n2n-1-2n+1
又a1=0,a2=1也滿足,
故an=n2n-1-2n+1.
故答案為:n2n-1-2n+1.
點(diǎn)評(píng):本題考查排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題,考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的求法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題中,錯(cuò)誤的是( 。
A、已知函數(shù)f(x)=
x
0
(ex+e-x)dx,則f(x)是奇函數(shù)
B、設(shè)回歸直線方程為
y
=2-2.5x,當(dāng)變量x增加一個(gè)單位時(shí)y平均減少2.5個(gè)單位
C、已知ξ服從正態(tài)分布 N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.1
D、對(duì)于命題p:“?x∈R,x2+x+1<0”,則?p:“?x∈R,x2+x+1>0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中A點(diǎn)坐標(biāo)為(
3
,1),B點(diǎn)是以原點(diǎn)O為圓心的單位圓上的動(dòng)點(diǎn),則|
OA
+
OB
|的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形OABC是邊長(zhǎng)為1的正方形,點(diǎn)D在OA的延長(zhǎng)線上,且OD=2,點(diǎn)P為△BCD內(nèi)(含邊界)的動(dòng)點(diǎn),設(shè)
OP
OC
OD
(α,β∈R),則α+β的最大值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱ABC-A1B1C1(側(cè)棱與底面垂直的棱柱稱為直棱柱)中,AC=CC1=3,BC=4,AB=5,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC1∥平面CDB1;
(2)求異面直線AC1與CB1所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,原點(diǎn)O在以A,B為直徑的圓C外,O點(diǎn)到⊙C的切線長(zhǎng)為l;
(Ⅰ)證明:l2=
OA
OB

(Ⅱ)若點(diǎn)A在拋物線y=x2+1上,點(diǎn)B在圓x2+(y-3)2=1,求l的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A,B兩地相距10km,A(-5,0),B(5,0).有一種商品,A、B兩地均有出售且價(jià)格相同,某地居民從兩地之一購(gòu)得商品運(yùn)回來(lái),每公里的運(yùn)費(fèi)A地是B地的3倍.問(wèn)該地居民應(yīng)如何選擇A地或B地購(gòu)買(mǎi)此種商品最合算?(僅從運(yùn)費(fèi)的多少來(lái)考慮)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C 的對(duì)邊分別是a,b,c,若a=3,A=30°,B=45°,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2cos(x+
π
3
).x∈(0,
π
3
]的值域是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案