1.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某多面體的三視圖,則該多面體的體積為(  )
A.8B.12C.16D.20

分析 由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的四棱錐,求出底面面積,代入錐體體積公式,可得答案

解答 解:由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的四棱錐,
其底面面積S=$\frac{1}{2}$(2+4)×4=12,
高h(yuǎn)=5,
故體積V=$\frac{1}{3}$×12×5=20;
故選D

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是由三視圖求體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若xlog34=1,則4x+4-x的值為( 。
A.3B.4C.$\frac{17}{4}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{1-(x-1)^{2}},0≤x<2}\\{f(x-2),x≥2}\end{array}\right.$,若對(duì)于正數(shù)kn(n∈N*),關(guān)于x的函數(shù)g(x)=f(x)-knx的零點(diǎn)個(gè)數(shù)恰好為2n+1個(gè),則k${\;}_{1}^{2}$+k${\;}_{2}^{2}$+…+${\;}_{n}^{2}$=$\frac{n}{4n+4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.某幾何體的三視圖如圖所示,圖中的四邊形都是邊長(zhǎng)為3的正方形,兩條虛線互相垂直,則該幾何體的體積是( 。
A.$\frac{45}{2}$B.$\frac{16}{3}$C.9-$\frac{π}{6}$D.27-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知正項(xiàng)等比數(shù)列{an}滿足:a7=a6+2a5,若存在兩項(xiàng)am,an,使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,則$\frac{1}{m}$+$\frac{16}{n}$的最小值為( 。
A.$\frac{25}{6}$B.$\frac{21}{5}$C.$\frac{8}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.定義:分子為1且分母為正整數(shù)的分?jǐn)?shù)稱為單位分?jǐn)?shù).我們可以把1分拆為若干個(gè)不同的單位分?jǐn)?shù)之和.如:$1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$,$1=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{12}$,$1=\frac{1}{2}+\frac{1}{5}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}$,
依此類推可得:$1=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{m}+\frac{1}{n}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}$,
其中m≤n,m,n∈N*.則m+n的值為( 。
A.24B.23C.32D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖所示,一個(gè)幾何體的主視圖和左視圖都是邊長(zhǎng)為4的正方形,中間線段平分正方形,俯視圖中有一內(nèi)切圓,則該幾何體的全面積為( 。
A.64+8πB.56+12πC.32+8πD.48+8π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知球O的半徑為2,一圓錐內(nèi)接于球O,且圓錐的下底面的內(nèi)接正三角形的面積為$\frac{9\sqrt{3}}{4}$,則該圓錐的表面積為(2$\sqrt{3}$+3)π或9π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知關(guān)于x的一元二次函數(shù)f(x)=ax2-bx+1
(1)若f(x)<0的解集為{x|x<-$\frac{1}{2}$或x>1},求實(shí)數(shù)a、b的值.
(2)若實(shí)數(shù)a、b滿足b=a+1,求關(guān)于x的不等式f(x)<0的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案