分析 (1)將條件式右側化簡計算,得出cosA;
(2)根據$\overrightarrow{AB}•\overrightarrow{AC}$=12得出bc的值,利用余弦定理得出b2+c2,解方程組得出b,c的值.
解答 解:(1)在△ABC中,cos2A=($\frac{\sqrt{3}}{2}$cosB-$\frac{1}{2}$sinB)($\frac{\sqrt{3}}{2}$cosB+$\frac{1}{2}$sinB)+sin2B
=$\frac{3}{4}co{s}^{2}B-\frac{1}{4}si{n}^{2}B+si{n}^{2}B$
=$\frac{3}{4}co{s}^{2}B$+$\frac{3}{4}si{n}^{2}B$=$\frac{3}{4}$.
∵A是銳角,∴cosA=$\frac{\sqrt{3}}{2}$.
∴A=$\frac{π}{6}$.
(2)∵$\overrightarrow{AB}•\overrightarrow{AC}$=bccosA=12,
∴bc=8$\sqrt{3}$.
又∵cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{^{2}+{c}^{2}-4}{16\sqrt{3}}$=$\frac{\sqrt{3}}{2}$.
∴b2+c2=28.
又b<c.
∴b=2$\sqrt{3}$,c=4.
點評 本題考查了平面向量的數量積運算,三角函數化簡求值,解三角形,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | $\frac{\sqrt{2}}{2}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{3}$+kπ(k∈Z) | B. | $\frac{π}{6}$+2kπ(k∈Z) | C. | $\frac{π}{3}$+2kπ(k∈Z) | D. | $\frac{π}{6}$+kπ(k∈Z) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com