11.已知0°<α<90°,0°<β<90°,求α-β的范圍是(-90°,90°).

分析 利用不等式的性質(zhì)即可得出.

解答 解:∵0°<α<90°,0°<β<90°,
∴-90°<-β<0°,
∴-90°<α-β<90°,
故答案為:(-90°,90°).

點(diǎn)評 本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若(x+1)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n,且a0+a1+…+an=243,則(n-x)n展開式的二次項系數(shù)和為( 。
A.16B.32C.64D.1024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.圓錐的全面積是5π,側(cè)面展開圖的圓心角是90°,則圓錐的體積是$\frac{\sqrt{15}}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,若acosB=bcosA,則△ABC的形狀是( 。
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)滿足:f(cosx)=$\frac{1}{2}$x,x∈[0,π],則f(cos$\frac{4π}{3}$)=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)=$\left\{\begin{array}{l}{x^2,-1≤x≤0}\\{1,0<x≤1}\end{array}\right.$則${∫}_{-1}^{1}$f(x)dx的值為( 。
A.$\frac{3}{2}$B.$\frac{4}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.從某企業(yè)生產(chǎn)的某中產(chǎn)品中抽取100件,測量這些產(chǎn)品的質(zhì)量指標(biāo)值.由測量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間[55,65),[65,75),[75,85]內(nèi)的頻率之比為4:2:1.
(Ⅰ)求這些產(chǎn)品質(zhì)量指標(biāo)落在區(qū)間[75,85]內(nèi)的概率;
(Ⅱ)用分層抽樣的方法在區(qū)間[45,75)內(nèi)抽取一個容量為6的樣本,將該樣本看成一個總體,從中任意抽取2件產(chǎn)品,求這2件產(chǎn)品都在區(qū)間[45,65)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在銳角△ABC中,a,b,c分別是內(nèi)角A、B、C所對邊長,且滿足cos2A═cos($\frac{π}{6}$+B)•cos($\frac{π}{6}$一B)+sin2B.
(1)求角A的大。
(2)若$\overrightarrow{AB}•\overrightarrow{AC}$=12.a(chǎn)=2,求b,c(b<c)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.實(shí)數(shù)x,y滿足(x-4)2+$\sqrt{y-2}$=0,則log64(x•y)=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案