A. | 11 | B. | 3 | C. | 2 | D. | $\frac{13}{3}$ |
分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最小值.
解答 解:作出不等式對應(yīng)的平面區(qū)域如圖,
由z=3x+y,得y=-3x+z,
平移直線y=-3x+z,由圖象可知當(dāng)直線y=-3x+z,經(jīng)過點(diǎn)A時(shí),直線y=-3x+z的截距最小,
此時(shí)z最。
由$\left\{\begin{array}{l}{x+y=1}\\{2x-y=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{5}{3}}\\{y=-\frac{2}{3}}\end{array}\right.$,即A($\frac{5}{3}$,-$\frac{2}{3}$),
此時(shí)z的最小值為z=3×$\frac{5}{3}$-$\frac{2}{3}$=$\frac{13}{3}$,
故選:D
點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{3}$對稱 | |
B. | 函數(shù)f(x)的圖象關(guān)于點(diǎn)($\frac{π}{4}$,0)對稱 | |
C. | 把函數(shù)f(x)的圖象向左平移$\frac{π}{12}$個(gè)單位,得到一個(gè)偶函數(shù)的圖象 | |
D. | 函數(shù)f(x)的最小正周期為π,且在[0,$\frac{π}{6}$]上為增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com