12.已知公差不為零的等差數(shù)列{an},滿足a1+a3+a5=12.,且a1,a5,a17成等比數(shù)列,Sn為{an}的前n項(xiàng)和.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求使Sn<5an成立的最大正整數(shù)n的值.

分析 (I)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出;
(II)利用等差數(shù)列的前n項(xiàng)和公式、不等式的解法即可得出.

解答 解:(Ⅰ)∵a1+a3+a5=12,
∴3a3=12,∴a3=4.
∵a1,a5,a17成等比數(shù)列,
∴${a_5}^2={a_1}{a_{17}}$,
∴(4+2d)2=(4-2d)(4+14d),
∵d≠0,解得d=1,
∴an=a3+(n-3)d=4+(n-3)=n+1;
∴數(shù)列{an}的通項(xiàng)公式為:∴${a_n}=n+1,n∈{N^*}$.
(Ⅱ)∵an=n+1,
∴${S_n}=\frac{n(n+3)}{2}$,
∴$\frac{n(n+3)}{2}≤5(n+1)$
即n2-7n-10≤0,即$\frac{{7-\sqrt{89}}}{2}≤n≤\frac{{7+\sqrt{89}}}{2}$,且n∈N+,
∴n=8,即n的最大值是8.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥1}\\{2x-y≥4}\end{array}\right.$,則目標(biāo)函數(shù)z=3x+y的最小值為( 。
A.11B.3C.2D.$\frac{13}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)集合 M={(x,y)|F(x,y)=0}為平面直角坐標(biāo)系x Oy內(nèi)的點(diǎn)集,若對(duì)于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2<0,則稱(chēng)點(diǎn)集 M滿足性質(zhì) P.給出下列四個(gè)點(diǎn)集:
①R={(x,y)|sinx-y+1=0}②S={(x,y)|lnx-y=0}
③T={(x,y)|x2+y2-1=0}④W={(x,y)|xy-1=0}
其中所有滿足性質(zhì) P的點(diǎn)集的序號(hào)是(  )
A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)$f(x)=1+x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+…-\frac{{{x^{2014}}}}{2014}+\frac{{{x^{2015}}}}{2015}$,若函數(shù)f(x)的零點(diǎn)都在[a,b](a<b,a,b∈Z)內(nèi),則b-a的最小值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知點(diǎn)P在拋物線x2=4y上,那么點(diǎn)P到點(diǎn)M(-1,2)的距離與點(diǎn)P到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)P的坐標(biāo)為( 。
A.$(1,\frac{1}{4})$B.$(-1,\frac{1}{4})$C.(-1,2)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=xlnx+mx(m∈R)的圖象在點(diǎn)(1,f(1))處的斜率為2.
(1)求實(shí)數(shù)m的值;
(2)設(shè)g(x)=$\frac{f(x)-x}{x-1}$,討論g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,三棱錐P-ABC中,E,D分別是BC,AC的中點(diǎn),PB=PC=AB=4,AC=8,BC=4$\sqrt{3}$,PA=2$\sqrt{6}$.
(Ⅰ)求證:BC⊥平面PED;
(Ⅱ)求平面PED與平面PAB所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.為了調(diào)查學(xué)生每天零花錢(qián)的數(shù)量(錢(qián)數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹(shù)立正確的消費(fèi)觀,樣本容量1000的頻率分布直方圖如圖所示,則樣本數(shù)據(jù)落在[6,14)內(nèi)的頻數(shù)為( 。
A.780B.680C.618D.460

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若a<0,則下列不等式成立的是( 。
A.$2a>{({\frac{1}{2}})^a}>{({0.2})^a}$B.${({\frac{1}{2}})^a}>{({0.2})^a}>2a$C.${({0.2})^a}>{({\frac{1}{2}})^a}>2a$D.$2a>{({0.2})^a}>{({\frac{1}{2}})^a}$

查看答案和解析>>

同步練習(xí)冊(cè)答案