考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件利用等差數(shù)列通項公式求出首項和公差,由此能求出等差數(shù)列{a
n}的通項公式.
(2)S
n=7n-n
2,
=7-n,設(shè)數(shù)列{
}的前n項和為M
n,當(dāng)n≤7時,T
n=M
n;當(dāng)n>7時,T
n=-M
n+2M
7,由此能求出結(jié)果.
解答:
解:(1)∵等差數(shù)列{a
n}中,a
3=2,3a
2+2a
7=0,
∴
| a1+2d=2 | 3(a1+d)+2(a1+6d)=0 |
| |
,
解得a
1=6,d=-2,
∴a
n=6+(n-1)×(-2)=8-2n.
(2)∵a
1=6,d=-2,
∴S
n=6n+
×(-2)=7n-n
2,
∴
=7-n,
∴{
}是首項為6,公差為-1的等差數(shù)列,
設(shè)數(shù)列{
}的前n項和為M
n,
則M
n=6n+
×(-1)=-
n2+n,
當(dāng)n≤7時,
T
n=M
n=6n+
×(-1)=-
n2+n,n≤7.
當(dāng)n>7時,T
n=-M
n+2M
7=
n2-n+42,n>7.
∴T
n=
.
點評:本題考查數(shù)列的通項公式和前n項和的求法,是中檔題,解題時要認(rèn)真審題,注意分類討論思想的合理運用.