正三棱錐底面邊長(zhǎng)為3,側(cè)棱與底面成60°角,則正三棱錐外接球面積為( 。
A、4π
B、4
3
π
C、16π
D、16
3
π
考點(diǎn):球的體積和表面積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由題意推出球心O到四個(gè)頂點(diǎn)的距離相等,利用直角三角形BOE,求出球的半徑,即可求出外接球的表面積.
解答: 解:如圖,
∵正三棱錐A-BCD中,底面邊長(zhǎng)為3,
∴BE=2
3
,
∵側(cè)棱與底面成60°角,
∴高AE=6
在直角三角形BOE中BO=R,EO=6-R,BE=2
3
,
由BO2=BE2+EO2,得R=2
∴外接球的半徑為2,表面積為:16π.
故選:C.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查空間想象能力,計(jì)算能力,仔細(xì)觀察和分析題意,是解好數(shù)學(xué)題目的前提.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)中,F(xiàn)為右焦點(diǎn),A為左頂點(diǎn),點(diǎn)B(0,b)且
AB
BF
=0,則此雙曲線的離心率為( 。
A、
5
+1
2
B、
2
C、
3
+1
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實(shí)數(shù)a、b、c滿足a+b+c=0,abc>0,則
1
a
+
1
b
+
1
c
的值( 。
A、一定是正數(shù)
B、一定是負(fù)數(shù)
C、可能是0
D、正、負(fù)不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn)cos(α+β)cosα+sin(α+β)sinα得(  )
A、cosα
B、cosβ
C、cos(2α+β)
D、sin(2α+β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一個(gè)鋼球置于由6根長(zhǎng)度為
2
的鋼管焊接成的正四面體的鋼架內(nèi),那么,這個(gè)鋼球的最大體積為( 。
A、
3
2
π
B、
π
6
C、
3
54
π
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“平行四邊形的對(duì)角線相等且互相平分”是( 。┬问矫}.
A、p∨qB、p∧q
C、¬pD、以上都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
25
-
y2
16
=1上一點(diǎn)P到它一個(gè)焦點(diǎn)的距離是8,則P到另一個(gè)焦點(diǎn)的距離是( 。
A、18B、5C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a3=2,3a2+2a7=0,其前n項(xiàng)和為Sn
(1)求等差數(shù)列{an}的通項(xiàng)公式;
(2)令bn=|
Sn
n
|,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,
1
x
+
2
y+1
=2,求2x+y的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案