【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),且長(zhǎng)軸長(zhǎng)為4.

)求橢圓的方程;

)若是橢圓的左頂點(diǎn),經(jīng)過(guò)左焦點(diǎn)的直線與橢圓交于, 兩點(diǎn),求的面積之差的絕對(duì)值的最大值.為坐標(biāo)原點(diǎn))

【答案】I;(II

【解析】試題分析:(1)首先由離心率的概念可得,然后由長(zhǎng)軸長(zhǎng)可得的值,進(jìn)而可得出所求的結(jié)果;(2)首先設(shè)的面積為的面積為,并分兩類討論:直線斜率不存在和直線斜率存在,分別聯(lián)立直線與橢圓的方程并表達(dá)出,然后結(jié)合基本不等式求解其最大值即可得出所求的結(jié)果.

試題解析:(1)由題意得,又,則,所以.

,故橢圓的方程為.

2)設(shè)的面積為的面積為.

當(dāng)直線斜率不存在時(shí),直線方程為,此時(shí)不妨設(shè),且面積相等, .

當(dāng)直線斜率存在時(shí),設(shè)直線方程為,設(shè), ,

和橢圓方程聯(lián)立得,消掉.

顯然,方程有根,且.

此時(shí).

因?yàn)?/span>,所以上式時(shí)等號(hào)成立).

所以的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,上頂點(diǎn)為,若直線的斜率為1,且與橢圓的另一個(gè)交點(diǎn)為 的周長(zhǎng)為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)的直線(直線的斜率不為1)與橢圓交于兩點(diǎn),點(diǎn)在點(diǎn)的上方,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓C:的左、右項(xiàng)點(diǎn)分別為A1,A2,左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,|F1F2|=,O為坐標(biāo)原點(diǎn).

(1)求橢圓C的方程;

(2)設(shè)過(guò)點(diǎn)P(4,m)的直線PA1,PA2與橢圓分別交于點(diǎn)M,N,其中m>0,求的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】網(wǎng)約車的興起豐富了民眾出行的選擇,為民眾出行提供便利的同時(shí)也解決了很多勞動(dòng)力的就業(yè)問(wèn)題,據(jù)某著名網(wǎng)約車公司“滴滴打車”官網(wǎng)顯示,截止目前,該公司已經(jīng)累計(jì)解決退伍軍人轉(zhuǎn)業(yè)為兼職或?qū)B毸緳C(jī)三百多萬(wàn)人次,梁某即為此類網(wǎng)約車司機(jī),據(jù)梁某自己統(tǒng)計(jì)某一天出車一次的總路程數(shù)可能的取值是20、22、24、26、28、,它們出現(xiàn)的概率依次是、、、t、

(1)求這一天中梁某一次行駛路程X的分布列,并求X的均值和方差;

(2)網(wǎng)約車計(jì)費(fèi)細(xì)則如下:起步價(jià)為5元,行駛路程不超過(guò)時(shí),租車費(fèi)為5元,若行駛路程超過(guò),則按每超出(不足也按計(jì)程)收費(fèi)3元計(jì)費(fèi).依據(jù)以上條件,計(jì)算梁某一天中出車一次收入的均值和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0)經(jīng)過(guò)點(diǎn)(,1),以原點(diǎn)為圓心、橢圓短半軸長(zhǎng)為半徑的圓經(jīng)過(guò)橢圓的焦點(diǎn).

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)過(guò)點(diǎn)(-1,0)的直線l與橢圓C相交于A,B兩點(diǎn),試問(wèn)在x軸上是否存在一個(gè)定點(diǎn)M,使得恒為定值?若存在,求出該定值及點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)上的最小值的表達(dá)式;

2)若函數(shù)上有且只有一個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程;

(2)若在區(qū)間上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在海岸處,發(fā)現(xiàn)北偏東方向,距離海里的處有一艘走私船,在處北偏西方向,距離海里的處有一艘緝私艇奉命以海里/時(shí)的速度追截走私船,此時(shí),走私船正以海里/時(shí)的速度從處向北偏東方向逃竄.

(1)問(wèn)船與船相距多少海里?船在船的什么方向?

(2)問(wèn)緝私艇沿什么方向行駛才能最快追上走私船?并求出所需時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),若在曲線上存在點(diǎn)使得,則實(shí)數(shù)的取值范圍為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案