分析 (1)設(shè)橢圓C的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),由橢圓的焦點(diǎn)坐標(biāo)和離心率列出方程組,由此能求出橢圓的短軸長(zhǎng).
(2)由知橢圓方程為$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$,設(shè)P(x0,y0),M(x,y),利用代入法能求出點(diǎn)M的軌跡方程.
解答 解:(1)∵橢圓C的左,右焦點(diǎn)坐標(biāo)分別是(-2,0),(2,0),離心率為$\frac{\sqrt{2}}{2}$,
∴設(shè)橢圓C的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
則$\left\{\begin{array}{l}{c=2}\\{e=\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a=2$\sqrt{2}$,b=2,c=2,
∴橢圓C短軸長(zhǎng)2b=4,.
(2)由(1)知橢圓方程為$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$,
設(shè)P(x0,y0),M(x,y),
則$\frac{{{x}_{0}}^{2}}{8}+\frac{{{y}_{0}}^{2}}{4}=1$,$x=\frac{{x}_{0}}{2}$,y=y0,
代入,得$\frac{(2x)^{2}}{8}+\frac{{y}^{2}}{4}=1$,
整理,得$\frac{{x}^{2}}{2}+\frac{{y}^{2}}{4}=1$.
∴點(diǎn)M的軌跡方程為$\frac{{x}^{2}}{2}+\frac{{y}^{2}}{4}=1$.
點(diǎn)評(píng) 本題考查橢圓的短軸長(zhǎng)的求法,考查點(diǎn)的軌跡方程的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | 37 | C. | 38 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3-2$\sqrt{2}$ | B. | 5-3$\sqrt{2}$ | C. | 9-6$\sqrt{2}$ | D. | 6-4$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com