8.已知直線l:2x+y-3=0與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩支分別相交于P,Q兩點,O為坐標原點,若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,則$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$=$\frac{5}{9}$.

分析 作出對應(yīng)的圖象,根據(jù)條件得到△OPQ是直角三角形,結(jié)合點到直線的距離以及直角三角形的邊角關(guān)系以及勾股定理進行轉(zhuǎn)化求解即可.

解答 解:作出對應(yīng)的圖象,
若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,則OP⊥OQ,
即△OPQ是直角三角形,
原點O到直線的距離d=OM=$\frac{|-3|}{\sqrt{{2}^{2}+1}}=\frac{3}{\sqrt{5}}$=$\frac{3\sqrt{5}}{5}$,
且|OP|2+|OQ|2=|PQ|2
∵|PQ||OM|=|OP||OQ|,
∴$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$=$\frac{|OP{|}^{2}+|OQ{|}^{2}}{(|OP||OQ|)^{2}}$=$\frac{|PQ{|}^{2}}{(|PQ||OM|)^{2}}$=$\frac{1}{|OM{|}^{2}}$=$\frac{1}{(\frac{3}{\sqrt{5}})^{2}}$=$\frac{5}{9}$,
故答案為:$\frac{5}{9}$.

點評 本題主要考查直線和雙曲線相交的應(yīng)用,根據(jù)直角三角形的性質(zhì),結(jié)合勾股定理以及點到直線的距離公式進行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(x)=2cos(2x+φ),滿足f(x+φ)=f(x+4φ),則f(x)在[${\frac{π}{2}$,π]上的單調(diào)遞增區(qū)間為( 。
A.[${\frac{π}{2}$,$\frac{2π}{3}}$]B.[${\frac{π}{2}$,$\frac{5π}{6}}$]C.[${\frac{2π}{3}$,$\frac{5π}{6}}$]D.[${\frac{5π}{6}$,π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知a是任意實數(shù),則關(guān)于x的不等式(a2-a+2016)x2<(a2-a+2016)2x+3的解為-1<x<3.(用x的不等式表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果是$\frac{15}{16}$,則整數(shù)N=( 。
A.16B.15C.14D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{3-4x}{2x-1},x∈[0,\frac{1}{4}]}\\{\frac{1}{2}lo{g}_{2}x-3,x∈(\frac{1}{4},1]}\end{array}\right.$,g(x)=x3-3ax2-2a(a≥1),若對于任意x1∈[0,1]總存在x2∈[0,1],使得g(x2)=f(x1)成立,則a的取值范圍是( 。
A.(1,$\frac{3}{2}$)B.(1,$\frac{3}{2}$]C.[1,$\frac{3}{2}$)D.[1,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.1B.$\frac{4}{3}$C.$\frac{5}{4}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AE=1,AB=2,CD=3,E,F(xiàn)分別為AB,CD上的點,以EF為軸將正方形ADFE向上翻折,使平面ADFE與平面BEFC垂直如圖2.
(1)求證:平面BDF⊥平面BCD;
(2)求多面體AEBDFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果一個正方體的體積在數(shù)值上等于V,表面積在數(shù)值上等于S,且V-S-m≥0恒成立,則實數(shù)m的范圍是( 。
A.(-∞,-16]B.(-∞,-32]C.[-32,-16]D.以上答案都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,AB為圓O的直徑,BC,CD為圓O的切線,B,D為切點.
(Ⅰ)求證:AD∥OC;
(Ⅱ)若AD•OC=8,求圓O的面積.

查看答案和解析>>

同步練習(xí)冊答案