1.如果一個正方體的體積在數(shù)值上等于V,表面積在數(shù)值上等于S,且V-S-m≥0恒成立,則實(shí)數(shù)m的范圍是( 。
A.(-∞,-16]B.(-∞,-32]C.[-32,-16]D.以上答案都不對

分析 設(shè)正方體的棱長為a,a>0,則體積V=a3,表面積S=6a2,將不等式恒成立進(jìn)行轉(zhuǎn)化,構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的極值和最值即可..

解答 解:設(shè)正方體的棱長為a,a>0,
則體積V=a3,表面積S=6a2,
則V-S-m≥0恒成立等價為a3-6a2-m≥0恒成立,
即m≤a3-6a2在a>0上恒成立,
設(shè)f(a)=a3-6a2
則f′(a)=3a2-12a=3a(a-4),
由f′(a)>0得a>4或a<0(舍),此時函數(shù)遞增,
由f′(a)<0得0<a<4,此時函數(shù)遞減,
即當(dāng)a=4時,函數(shù)取得極小值同時也是最小值f(4)=43-6×42=64-96=-32,
則m≤-32,
故選:B.

點(diǎn)評 本題主要考查不等式恒成立的求解,設(shè)出棱長,求出對應(yīng)的體積和表面積,利用參數(shù)分離法進(jìn)行轉(zhuǎn)化,構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的最值是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)f(x)=x3+mlog2(x+$\sqrt{{x^2}+1}$)(m∈R,m>0),則不等式f(m)+f(m2-2)≥0的解是m≥1.(注:填寫m的取值范圍)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知直線l:2x+y-3=0與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩支分別相交于P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,則$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$=$\frac{5}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.以坐標(biāo)原點(diǎn)O為極點(diǎn),O軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=2(sinθ+cosθ+$\frac{1}{ρ}$).
(1)寫出曲線C的參數(shù)方程;
(2)在曲線C上任取一點(diǎn)P,過點(diǎn)P作x軸,y軸的垂線,垂足分別為A,B,求矩形OAPB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.平面內(nèi)有向量$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(-4,-5),$\overrightarrow{OP}$=(cosα,sinα),當(dāng)α為何值時,f(α)=$\overrightarrow{PA}$•$\overrightarrow{PB}$能取得最大值,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知AB是圓O的直徑,點(diǎn)C在圓O上(異于點(diǎn)A,B),連接BC并延長至點(diǎn)D,使得BC=CD,連接DA交圓O于點(diǎn)E,過點(diǎn)C作圓O的切線交AD于點(diǎn)F.
(Ⅰ)若∠DBA=60°,求證:點(diǎn)E為AD的中點(diǎn);
(Ⅱ)若CF=$\frac{1}{2}$R,其中R為圓C的半徑,求∠DBA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,已知AB是⊙O的直徑,點(diǎn)D是⊙O上一點(diǎn),過點(diǎn)D作⊙O的切線,交AB的延長線于點(diǎn)C,過點(diǎn)C作AC的垂線,交AD的延長線于點(diǎn)E.
(Ⅰ)求證:△CDE為等腰三角形;
(Ⅱ)若AD=2,$\frac{BC}{CE}$=$\frac{1}{2}$,求⊙O的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,圓O的半徑為1,A,B,C是圓周上的三點(diǎn),過點(diǎn)A作圓O的切線與OC的延長線交于點(diǎn)P,若CP=AC,則∠COA=$\frac{π}{3}$;AP=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中點(diǎn),AC,BD交于O點(diǎn),求二面角Q-BD-C的大。

查看答案和解析>>

同步練習(xí)冊答案