A. | $\frac{11}{2}$ | B. | $\frac{16}{3}$ | C. | $2\sqrt{7}$ | D. | 4 |
分析 a1,a3,a13成等比數(shù)列,a1=1,可得:${a}_{3}^{2}$=a1a13,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入$\frac{2{S}_{n}+14}{{a}_{n}+1}$化簡(jiǎn)利用導(dǎo)數(shù)研究單調(diào)性即可得出.
解答 解:∵a1,a3,a13成等比數(shù)列,a1=1,
∴${a}_{3}^{2}$=a1a13,
∴(1+2d)2=1+12d,d≠0,
解得d=2.
∴an=1+2(n-1)=2n-1.
Sn=$n+\frac{n(n-1)}{2}×2$=n2.
∴$\frac{2{S}_{n}+14}{{a}_{n}+1}$=$\frac{2{n}^{2}+14}{2n}$=n+$\frac{7}{n}$,
利用函數(shù)f(x)=x+$\frac{7}{x}$,在$[1,\sqrt{7})$上單調(diào)遞減,在$(\sqrt{7},+∞)$上單調(diào)遞增.
∴當(dāng)n=3時(shí),$\frac{{2{S_n}+14}}{{{a_n}+1}}(n∈N*)$的最小值為$\frac{16}{3}$.
故選:B.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、數(shù)列的單調(diào)性、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | ||||
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2+i | B. | -2+i | C. | 2-i | D. | -2-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | -6 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2+i | B. | 3 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (4kπ,4kπ+$\frac{π}{2}$)(k∈Z) | B. | (4kπ,4kπ+π)(k∈Z) | C. | (4kπ,4kπ+$\frac{3π}{2}$)(k∈Z) | D. | (4kπ,4kπ+2π)(k∈Z) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com