某市一家商場的新年最高促銷獎設(shè)立了兩種領(lǐng)獎方式,獲獎?wù)呖梢赃x擇2000元的獎金,或者從12月20日到第二年的1月1日,每天到該商場領(lǐng)取獎品,第1天領(lǐng)取的獎品的價值為100元,第2天為110元,以后逐天增加10元,你認(rèn)為哪種領(lǐng)獎方式獲獎?wù)呤芤娓啵?/div>
考點:函數(shù)最值的應(yīng)用
專題:應(yīng)用題,等差數(shù)列與等比數(shù)列
分析:從12月20號到第二年的1月1號共13天,每天領(lǐng)取獎金數(shù)是以100為首項,以10為公差的等差數(shù)列,利用等差數(shù)列的求和公式求和,比較即可得出結(jié)論.
解答: 解:從12月20號到第二年的1月1號共13天,每天領(lǐng)取獎金數(shù)是以100為首項,以10為公差的等差數(shù)列,
a1=100,d=10,n=13,
∴共獲獎品的價值為13×100+
13×12
2
×5=2080元,
顯然第二種方式獲益多.
點評:本題考查利用數(shù)學(xué)知識解決實際問題,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=3ax2+6x-1,若f(x)≤0在R上恒成立,則a的取值范圍是( 。
A、(-∞,-3)
B、(-∞,-
1
3
)
C、(-∞,-3]
D、(-∞,-
1
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的定義域為R,且對任意實數(shù)a、b,都有f(a+b)=f(a)+f(b),當(dāng)x>0時,f(x)<0恒成立.
(1)求證:函數(shù)y=f(x)是R上的減函數(shù);
(2)若不等式f(mx2-x+1)<-f(x2-mx)對任意實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

通過隨機(jī)詢問某地110名高中學(xué)生在坐座位時是否挑同桌,得知如下的列聯(lián)表.
合計
挑同桌404080
不挑同桌201030
總計6050110
(1)從這60名男生中按是否挑同桌采取分層抽樣的方法,抽取一個容量為6的樣本,問樣本中挑同桌與不挑同桌的男生各有多少名?
(2)從(1)中的6名男生樣本中隨機(jī)選取2名作深度采訪,求選到挑同桌與不挑同桌的男生各1名的概率;
(3)根據(jù)以上列聯(lián)表,是否有85%的把握認(rèn)為“性別與坐座位時是否挑同桌”有關(guān)?
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
參考值表:
p(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+ϕ)+B的一部分圖象如圖所示,如果A>0,ω>0,|φ|<
π
2
,
(1)求函數(shù)f(x)的解析式.
(2)記g(x)=log2[f(x)-1],求函數(shù)g(x)的定義域.
(3)若對任意的x∈[-
π
6
,
π
6
],不等式log
1
2
f(x)>m-3恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:函數(shù)f(x)=-x3+1在(-∞,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在平面四邊形ACPE中,D為AC中點,AD=DC=PD=2,AE=1,且AE⊥AC,PD⊥AC,現(xiàn)沿PD折起使∠ADC=90°,得到立體圖形(如圖2),又B為平面ADC內(nèi)一點,并且ABCD為正方形,設(shè)F,G,H分別為PB,EB,PC的中點.
(1)求三棱錐P-GHF的體積;
(2)在線段PC上是否存在一點M,使直線FM與直線PA所成角為60°?若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
x+3
2y
-2
3+y
x-3
=
0
0
,求x+y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知△ABC的頂點A(8,5),B(4,-2),C(-6,3).求經(jīng)過兩邊AB和AC中點的直線的方程.
(2)對某校初二男生進(jìn)行體育項目俯臥撐測試,被抽到的50名學(xué)生的成績?nèi)缦拢?br />
成績(次)109876543
人數(shù)865164731
試求全校初二男生俯臥撐測試的平均成績.

查看答案和解析>>

同步練習(xí)冊答案