已知向量
a
=(2,-1),
b
=(3,x).若
a
b
=3,則x=( 。
A、6B、5C、4D、3
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:由題意,
a
=(2,-1),
b
=(3,x).
a
b
=3,由數(shù)量積公式可得到方程6-x=3,解此方程即可得出正確選項(xiàng).
解答: 解:∵向量
a
=(2,-1),
b
=(3,x).
a
b
=3,
∴6-x=3,∴x=3.
故選D
點(diǎn)評(píng):本題考查數(shù)量積的坐標(biāo)表達(dá)式,熟練記憶公式是解本題的關(guān)鍵,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=sin(2x+
π
3
)(x∈R)有下列命題:
①把函數(shù)f(x)的圖象沿水平方向右平移
π
12
個(gè)單位,可得到函數(shù)y=cos2x的圖象;
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(
π
6
,0)對(duì)稱;
③把函數(shù)f(x)的圖象上每個(gè)點(diǎn)的橫坐標(biāo)縮小到原來(lái)的
1
2
,得到函數(shù)y=sin(x+
π
6
)的圖象;
④函數(shù)f(x)的圖象關(guān)于直線x=-
12
對(duì)稱.
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)對(duì)于一切實(shí)數(shù)x、y,都有f(x+y)=f(x)+f(y).
(1)求f(0),并證明y=f(x)是奇函數(shù);
(2)當(dāng)x>0時(shí),f(x)<0,求函數(shù)y=f(x)的單調(diào)性;
(3)若f(1)=3,在(2)的情況下,解不等式f(x)<-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=sin(-2x+
π
4
),給出以下四個(gè)論斷
①函數(shù)圖象關(guān)于直線x=-
8
對(duì)稱;
②函數(shù)圖象一個(gè)對(duì)稱中心是(
8
,0);
③函數(shù)f(x)在區(qū)間[-
π
8
,
8
]上是減函數(shù);
④f(x)可由y=sin2x向左平移
π
8
個(gè)單位得到
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-x+
a+3
x
在定義域內(nèi)無(wú)極值,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在△ABC中,D為BC邊上的一點(diǎn),且BD=2DC.若
AC
=m
AB
+n
AD
(m,n∈R),則m-n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某家電專賣店在國(guó)慶期間設(shè)計(jì)一項(xiàng)有獎(jiǎng)促銷活動(dòng),每購(gòu)買一臺(tái)電視,即可通過(guò)電腦產(chǎn)生一組3個(gè)數(shù)的隨機(jī)數(shù)組,根據(jù)下表兌獎(jiǎng):
獎(jiǎng)次一等獎(jiǎng)二等獎(jiǎng)三等獎(jiǎng)
隨機(jī)數(shù)組的特征3個(gè)1或3個(gè)0只有2個(gè)1或2個(gè)0只有1個(gè)1或1個(gè)0
獎(jiǎng)金(單位:元)5m2mm
商家為了了解計(jì)劃的可行性,估計(jì)獎(jiǎng)金數(shù),進(jìn)行了隨機(jī)模擬試驗(yàn),并產(chǎn)生了20個(gè)隨機(jī)數(shù)組,試驗(yàn)結(jié)果如下:
247,235,145,324,754,500,296,065,379,118,520,161,218,953,254,406,227,111,358,791.
(1)在以上模擬的20組數(shù)中,隨機(jī)抽取3組數(shù),求至少有1組獲獎(jiǎng)的概率;
(2)根據(jù)以上模擬試驗(yàn)的結(jié)果,將頻率視為概率:
(i)若活動(dòng)期間某單位購(gòu)買四臺(tái)電視,求恰好有兩臺(tái)獲獎(jiǎng)的概率;
(ii)若本次活動(dòng)平均每臺(tái)電視的獎(jiǎng)金不超過(guò)85元,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=
1
2
(|x-a2|+|x-2a2|-3a2),若對(duì)于任意的實(shí)數(shù)x,都有f(x-1)≤f(x)成立,則實(shí)數(shù)a的取值范圍是(  )
A、[-
3
6
,
3
6
]
B、[-
6
6
,
6
6
]
C、[-
1
3
1
3
]
D、[-
3
3
,
3
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)在△ABC中,∠A、∠B、∠C所對(duì)的邊分別是a、b、c,設(shè)平面向量
e1
=(2cosC,
c
2
-b),
e2
=(
1
2
a,1),且
e1
e2

(I)求cos2A的值;      
(Ⅱ)若a=2,則△ABC的周長(zhǎng)L的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案