17.三角形的面積s=$\frac{1}{2}$(a+b+c)r,a,b,c為其邊長(zhǎng),r為內(nèi)切圓的半徑,利用類(lèi)比法可以得出四面體的體積為(  )
A.V=$\frac{1}{3}$abc(a,b,c為地面邊長(zhǎng))
B.V=$\frac{1}{3}$sh(s為地面面積,h為四面體的高)
C.V=$\frac{1}{3}$(S1+S2+S3+S4)r,(S1,S2,S3,S4分別為四個(gè)面的面積,r為內(nèi)切球的半徑)
D.V=$\frac{1}{3}$(ab+bc+ac)h,(a,b,c為地面邊長(zhǎng),h為四面體的高)

分析 根據(jù)平面與空間之間的類(lèi)比推理,由點(diǎn)類(lèi)比點(diǎn)或直線,由直線 類(lèi)比 直線或平面,由內(nèi)切圓類(lèi)比內(nèi)切球,由平面圖形面積類(lèi)比立體圖形的體積,結(jié)合求三角形的面積的方法類(lèi)比求四面體的體積即可.

解答 解:設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個(gè)面的距離都是r,
根據(jù)三角形的面積的求解方法:分割法,將O與四頂點(diǎn)連起來(lái),可得四面體的體積等于以O(shè)為頂點(diǎn),分別以四個(gè)面為底面的4個(gè)三棱錐體積的和,
∴V=$\frac{1}{3}$(S1+S2+S3+S4)r,
故選:C.

點(diǎn)評(píng) 類(lèi)比推理是指依據(jù)兩類(lèi)數(shù)學(xué)對(duì)象的相似性,將已知的一類(lèi)數(shù)學(xué)對(duì)象的性質(zhì)類(lèi)比遷移到另一類(lèi)數(shù)學(xué)對(duì)象上去.一般步驟:①找出兩類(lèi)事物之間的相似性或者一致性.②用一類(lèi)事物的性質(zhì)去推測(cè)另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(或猜想)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知冪函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)($\sqrt{3}$,3),則f(2)的值是( 。
A.4B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在四棱錐P-ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=1,AD=2,PA⊥底面ABCD,PD與底面成30°角.
(1)求證:BC∥平面PAD;
(2)若AE⊥PC,E為垂足,求證:PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知E、F、G、H依次為空間四邊形ABCD的邊AB、BC、CD、DA上的點(diǎn),且直線EF交直線HG于點(diǎn)P,則點(diǎn)P的位置是必處在( 。┑纳厦妫
A.BDB.ADC.ACD.平面BCD之內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.條件“x=0”是條件“ax=1(a>0且a≠1)”的充要條件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若復(fù)數(shù)Z=$\frac{a+3i}{1-2i}$(a∈R,i是虛數(shù)單位)是純虛數(shù),則在復(fù)平面內(nèi)Z對(duì)應(yīng)點(diǎn)的坐標(biāo)為(  )
A.(0,2)B.(0,3i )C.(0,3)D.(0,2i)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_2}x}&{x>0}\\{{{log}_2}(1-x)}&{x≤0}\end{array}}\right.$,且對(duì)任意x∈R,x≠0,f(ax)<f(x)恒成立,則實(shí)數(shù)a的取值范圍是0<a<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,若過(guò)點(diǎn)F且與斜率為正數(shù)的漸近線垂直的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則此雙曲線離心率的取值范圍是( 。
A.(1,$\sqrt{2}$]B.(1,$\sqrt{2}$)C.($\sqrt{2}$,+∞)D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.二次函數(shù)y=x2-4x+5的對(duì)稱(chēng)軸方程是x=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案