分析 由二次根式的性質(zhì)可得-1≤x≤1,然后由柯西不等式求解最大值即可.
解答 解:根據(jù)題意得:$\left\{\begin{array}{l}{x+1≥0}\\{1-x≥0}\end{array}\right.$,
解得:-1≤x≤1,
由柯西不等式得:y=$\sqrt{x+1}$+$\sqrt{1-x}$≤$\sqrt{{1}^{2}+{1}^{2}}$•$\sqrt{(\sqrt{x+1})^{2}+({\sqrt{1-x})}^{2}}$=2(當(dāng)且僅當(dāng)$\sqrt{x+1}$=$\sqrt{1-x}$,即x=0時,取等號),
故函數(shù)y=$\sqrt{x+1}$+$\sqrt{1-x}$的最大值為2.
故答案為:2.
點(diǎn)評 此題考查了無理函數(shù)的最值問題.此題難度適中,注意掌握柯西不等式的應(yīng)用是解此題的關(guān)鍵,注意柯西不等式:ax+by≤$\sqrt{{a}^{2}+^{2}}$•$\sqrt{{x}^{2}+{y}^{{\;}^{2}}}$(當(dāng)且僅當(dāng)ay=bx時取“=”).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com