20.設(shè)復(fù)數(shù)z滿足i(z+1)=-3+2i,則z的實部為1.

分析 把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:由i(z+1)=-3+2i,
得$z=\frac{-3+i}{i}$=$\frac{-i(-3+i)}{-{i}^{2}}=1+3i$,
則z的實部為:1.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知“p:函數(shù)f(x)=$\frac{x}{\sqrt{(1-a){x}^{2}-(1-a)x+1}}$的定義城為R;:“q:函數(shù)f(x)=1n|2x-a|在($\frac{1}{2}$,+∞)內(nèi)為增函數(shù)”,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知曲線C的極坐標方程是ρ-6cosθ+2sinθ+$\frac{1}{ρ}$=0,以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,在平面直角坐標系xOy中,直線l經(jīng)過點P(3,3),傾斜角α=$\frac{π}{3}$
(1)寫出曲線C直角坐標方程;        
(2)寫出直線l的標準參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列說法正確的是( 。
A.|r|≤1;r越大,相關(guān)程度越大;反之,相關(guān)程度越小
B.線性回歸方程對應(yīng)的直線$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$至少經(jīng)過其樣本數(shù)據(jù)點(x1,y1),(x2,y2),(x3,y3),(xn,yn)中的一個點
C.在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D.在回歸分析中,相關(guān)指數(shù)R2為0.98的模型比相關(guān)指數(shù)R2為0.80的模型擬合的效果差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知命題p:方程$\frac{{x}^{2}}{2m}$-$\frac{{y}^{2}}{m-1}$=1表示焦點在y軸上的橢圓,命題q:雙曲線$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{m}$=1的離心率e∈(1,2),若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.直線y+2=k (x+1)恒過點( 。
A.(2,1)B.(-2,-1)C.(-1,-2)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知正方體的外接球的體積是$\frac{32}{3}$π,則這個正方體的體積是( 。
A.$\frac{64}{27}$B.$\frac{{64\sqrt{3}}}{9}$C.$\frac{64}{9}$D.$\frac{{64\sqrt{3}}}{27}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.中國古代數(shù)學名著《張丘建算經(jīng)》中記載:“今有馬行轉(zhuǎn)遲,次日減半,疾七日,行七百里.”意思是:現(xiàn)有一匹馬行走的速度逐漸減慢,每天走的里程數(shù)是前一天的一半,連續(xù)行走7日,共走了700里.若該匹馬連續(xù)按此規(guī)律行走,則它在第8天到第14天這7天時間所走的總里程為( 。
A.350里B.1050里C.$\frac{175}{32}$里D..$\frac{22575}{32}$里

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設(shè)正實數(shù)a,b滿足a+b=1,則a2+b2最小值是$\frac{1}{2}$,$\sqrt{a}+\sqrt$最大值是$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案