15.函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≥0}\\{g(x)+a,x<0}\end{array}\right.$為奇函數(shù),若g(-2)=4,則a=( 。
A.-3B.4C.-7D.6

分析 根據(jù)函數(shù)奇偶性的性質(zhì)建立方程關(guān)系進(jìn)行求解即可.

解答 解:∵f(x)是奇函數(shù),
∴f(-2)=-f(2),
即g(-2)+a=-(22-1)=-3,
即a=-3-g(-2)=-3-4=-7,
故選:C.

點(diǎn)評(píng) 本題主要考查分段函數(shù)的應(yīng)用,利用函數(shù)奇偶性的性質(zhì)建立方程關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+4,x≥0}\\{x-4,x<0}\end{array}\right.$,當(dāng)0<a<1時(shí),則f(a-1)的值是( 。
A.a+3B.-a+5C.a-5D.-a-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知直線方程y=$\sqrt{3}$x+2,則該直線的傾斜角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知O是銳角△ABC的外接圓圓心,∠A=60°,$\frac{cosB}{sinC}$•$\overrightarrow{AB}$+$\frac{cosC}{sinB}$•$\overrightarrow{AC}$=m•$\overrightarrow{OA}$,則m的值為( 。
A.-$\sqrt{3}$B.$\sqrt{3}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在8件獲獎(jiǎng)作品中,有3件一等獎(jiǎng),有5件二等獎(jiǎng),從這8件作品中任取3件.
(1)求取出的3件作品中,一等獎(jiǎng)多于二等獎(jiǎng)的概率;
(2)設(shè)X為取出的3件作品中一等獎(jiǎng)的件數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知a是方程x+lgx=4的根,b是方程x+10x=4的根,函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x2+(a+b-4)x,若對(duì)任意x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,則實(shí)數(shù)t的取值范圍是(  )
A.[$\sqrt{2}$,+∞)B.[2,+∞)C.(0,2]D.[-$\sqrt{2}$,-1]∪[$\sqrt{2}$,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某商場(chǎng)銷售一種“艾麗莎”品牌服裝,銷售經(jīng)理根據(jù)銷售記錄發(fā)現(xiàn),該服裝在過(guò)去的一個(gè)月內(nèi)(以30天計(jì))每件的銷售價(jià)格P(x)(百元)與時(shí)間x(天)的函數(shù)關(guān)系近似滿足P(x)=1+$\frac{k}{x}$(k為正的常數(shù)),日銷售量Q(x)(件)與時(shí)間x(天)的部分?jǐn)?shù)據(jù)如表所示:
 x(天) 10 20 25 30
 Q(x)(件) 110 120 125 120
已知第2哦天的日銷售量為126百元.
(Ⅰ)求k的值;
(Ⅱ)給出以下三種函數(shù)模型:
①Q(mào)(x)=a•bx;
②Q(x)=a•logbx;
③Q(x)=a|x-25|+b.
請(qǐng)您根據(jù)如表中的數(shù)據(jù),從中選擇你認(rèn)為最合適的一種函數(shù)來(lái)描述日銷售量Q(x)(件)與時(shí)間x(天)的變化關(guān)系,并求出該函數(shù)的解析式;
(Ⅲ)求該服裝的日銷收入f(x)(1≤x≤30,x∈N*)(百元)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知f(x)=ax2-(a+2)x+2.
(1)若實(shí)數(shù)a<0,求關(guān)于x的不等式f(x)>0的解集;
(2)若“$\frac{1}{2}$≤x≤$\frac{3}{4}$”是“f(x)+2x<0”的充分條件,求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知點(diǎn)A(0,1),B(3,2),C(a,0),若A,B,C三點(diǎn)共線,則a=(  )
A.$\frac{1}{2}$B.-1C.-2D.-3

查看答案和解析>>

同步練習(xí)冊(cè)答案