分析 作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.
解答 解:作出不等式對應的平面區(qū)域(陰影部分),
由z=$\frac{1}{2}$x+y,得y=-$\frac{1}{2}$x+z,
平移直線y=-$\frac{1}{2}$x+z,由圖象可知當直線y=-$\frac{1}{2}$x+z經過點A時,直線y=-$\frac{1}{2}$x+z的截距最大,此時z最大.
由$\left\{\begin{array}{l}{y=x}\\{x+y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,
即A(1,1).
此時z的最大值為z=$\frac{1}{2}$+1=$\frac{3}{2}$
故答案為:$\frac{3}{2}$.
點評 本題主要考查線性規(guī)劃的應用,利用數形結合是解決線性規(guī)劃題目的常用方法.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [2,2+2e] | B. | [1,2+2e] | C. | [0,2] | D. | [1,2+e] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ¬p:?x∈R,sinx$≤\frac{1}{2}$ | B. | ¬p:?x∈R,sinx>$\frac{1}{2}$ | C. | ¬p:?x∈R,sinx$>\frac{1}{2}$ | D. | ¬p:?x∈R,sinx$≥\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com