8.已知函數(shù)f(x)=sinx+lnx-kx(k>0)
(1)若函數(shù)f(x)在$(0,\frac{π}{2}]$單調(diào)遞增,求k的取值范圍
(2)設(shè)g(x)=sinx(x>0),若y=g(x)的圖象在y=f(x)的圖象上方,求k的取值范圍.

分析 (1)由題意,f′(x)=cosx+$\frac{1}{x}$-k≥0,則k≤cosx+$\frac{1}{x}$,(cosx+$\frac{1}{x}$)min即可;
(2)由題意得x>0時(shí),g(x)>f(x)恒成立,化為lnx-kx<0(x>0)恒成立,h(x)=lnx-kx,利用導(dǎo)數(shù)求其最大值即可.

解答 解:(1)由題意,f′(x)=cosx+$\frac{1}{x}$-k≥0,則k≤cosx+$\frac{1}{x}$,
而cosx+$\frac{1}{x}$在(0,$\frac{π}{2}$]上單調(diào)遞減,
則(cosx+$\frac{1}{x}$)min=cos$\frac{π}{2}$+$\frac{2}{π}$=$\frac{2}{π}$,則k∈(0,$\frac{2}{π}$];
(2)由題意得x>0時(shí),g(x)>f(x)恒成立,
則lnx-kx<0(x>0)恒成立,
令h(x)=lnx-kx,h′(x)=$\frac{1}{x}$-k,
x∈(0,$\frac{1}{k}$)時(shí),h′(x)>0,
x∈($\frac{1}{k}$,+∞)時(shí),h′(x)<0,
則hmax(x)=h($\frac{1}{k}$)=ln$\frac{1}{k}$-1<0,
則k>$\frac{1}{e}$.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及恒成立問題化成最值問題的處理方法,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,a1=2,a5=3a3,則a3=( 。
A.-2B.0C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若q>0,命題甲:“a,b為實(shí)數(shù),且|a-b|<2q”;命題乙:“a,b為實(shí)數(shù),滿足|a-2|<q,且|b-2|<q”,則甲是乙的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某學(xué)校高一、高二、高三三個(gè)年級(jí)共有300名教師,為調(diào)查他們的備課時(shí)間情況,通過分層抽樣獲得了20名教師一周的備課時(shí)間,數(shù)據(jù)如下表(單位:小時(shí));
高一年級(jí)77.588.59
高二年級(jí)78910111213
高三年級(jí)66.578.51113.51718.5
(Ⅰ)試估計(jì)該校高三年級(jí)的教師人數(shù);
(Ⅱ)從高一年級(jí)和高二年級(jí)抽出的教師中,各隨機(jī)選取一人,高一年級(jí)選出的人記為甲,高二年級(jí)班選出的人記為乙,求該周甲的備課時(shí)間不比乙的備課時(shí)間長(zhǎng)的概率;
(Ⅲ)再?gòu)母咭、高二、高三三個(gè)年級(jí)中各隨機(jī)抽取一名教師,他們?cè)撝艿膫湔n時(shí)間分別是8,9,10(單位:小時(shí)),這三個(gè)數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為$\overline{x_1}$,表格中的數(shù)據(jù)平均數(shù)記為$\overline{x_0}$,試判斷$\overline{x_0}$與$\overline{x_1}$的大。ńY(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.研究表明,成年人的身高和體重具有線性相關(guān)性,小明隨機(jī)調(diào)查了五名成年人甲,乙,丙,丁,戊的身高和體重,得到的結(jié)果如下表所示
編號(hào)
身高x(cm)166170172174178
體重y(kg)5560656570
身高x和體重y的回歸直線方程為y=$\frac{5}{4}$x+a,那么身高為180cm的成年人體重大約是73 kg.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.以雙曲線$\frac{x^2}{4}-\frac{y^2}{12}=-1$的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓方程是( 。
A.$\frac{x^2}{4}+\frac{y^2}{m}=1$B.$\frac{x^2}{m}-\frac{y^2}{2}=1$C.$\frac{x^2}{16}+\frac{y^2}{4}=1$D.$\frac{x^2}{4}+\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.?t∈R,不等式|2x-2|+4x<|t-3|+|t-4|恒成立.
(1)求實(shí)數(shù)x的取值范圍M.
(2)設(shè)a,b∈M,比較|1-4ab|與2|a-b|的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.$f(x)=asinx-b{log_3}(\sqrt{{x^2}+1}-x)+1$(a,b∈R),若f(lglog310)=5,則f(lglg3)的值是( 。
A.-5B.-3C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知$tanθ=\frac{1}{3}$,則$sin({\frac{3}{2}π+2θ})$的值為(  )
A.$-\frac{4}{5}$B.$-\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案