16.已知△ABC中,a,b,c分別為A,B,C的對邊,acosA=bcosB,則△ABC為( 。
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰或直角三角形

分析 根據(jù)正弦定理化簡可得sin2A=sin2B,再利用正弦函數(shù)的性質(zhì)得出A,B的關(guān).

解答 解:∵acosA=bcosB,
∴sinAcosA=sinBcosB,
∴sin2A=sin2B,
∴2A=2B或2A+2B=180°,
∴A=B或A+B=90°,
∴△ABC是等腰三角形或直角三角形.
故選D.

點評 本題考查了三角形的形狀判斷,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.一元二次不等式ax2+bx+c>0的解集為{x|x<-2或x>4},求:
(1)函數(shù)f(x)=ax2+bx+c的單調(diào)區(qū)間.
(2)比較f(2),f(-1),f(5)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合A={x|-2<x<2},B={x|x∈N},則A∩B=( 。
A.{x|0<x<2}B.{1}C.{0,1}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列求導(dǎo)運算正確的是( 。
A.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$B.(log2x)′=$\frac{1}{xln2}$
C.(cosx)′=sinxD.($\frac{{e}^{x}}{x}$)′=$\frac{x{e}^{x}+{e}^{x}}{{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列4個命題:①對立事件一定是互斥事件;②若A,B為兩個事件,則P(A+B)=P(A)+P(B);③若事件A,B,C彼此互斥,則P(A)+(B)+P(C)=1;④若事件A,B滿足P(A)+P(B)=1,則A,B是對立事件,其中錯誤的有( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在一個有三個孩子的家庭中,
(1)已知其中一個是女孩,則至少有一個男孩的概率是$\frac{6}{7}$.
(2)已知年齡最小的孩子是女孩,則至少有一個男孩的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了解學(xué)生喜歡數(shù)學(xué)是否與性別有關(guān),對100個學(xué)生進行了問卷調(diào)查,得到了如下的列聯(lián)表:
喜歡數(shù)學(xué)不喜歡數(shù)學(xué)合計
男生40
女生30
合計100
已知在全部100人中隨機抽取1人抽到喜歡數(shù)學(xué)的學(xué)生的概率為$\frac{3}{5}$.
(Ⅰ)請將上面的列聯(lián)表補充完整(不寫計算過程);
(Ⅱ)能否在犯錯誤的概率不超過1%的前提下認為喜歡數(shù)學(xué)與性別有關(guān)系?
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
下面的臨界值表供參考:
P(K2≥k) 0.50  0.40 0.25 0.15 0.10 0.050.025  0.0100.005  0.001
 k0.455 0.708  1.3232.072  2.706 3.841 5.024 6.635 7.87910.828 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知等差數(shù)列{an}滿足a1+a5=6,a2+a14=26,則a4+a7=( 。
A.24B.8C.20D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.2016年12月28日,滬昆高鐵全線開通,安順全面進入高鐵時代.據(jù)悉共28趟列車經(jīng)過安順抵達昆明,這28趟列車的單程運行時間(單位:分鐘)的莖葉圖如圖所示.若將列車按單程運行時間由快到慢編號為01~28號,再用系統(tǒng)抽樣方法從中抽取4組,則其中單程運行時間在區(qū)間[110,120]上的列車趟數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案