17.圓C:x2+y2-6x-2y+1=0的周長是6π.

分析 求出圓的半徑,即可求解圓的周長.

解答 解:圓C:x2+y2-6x-2y+1=0的標(biāo)準(zhǔn)方程為:(x-3)2+(y-1)2=9,
圓的半徑為:3.
圓的周長為:6π.
故答案為:6π

點評 本題考查圓的方程的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,角A、B、C所對的邊分別為a、b、c,c-b=6,c+b-a=2,且O為此三角形的內(nèi)心,則$\overrightarrow{AO}$•$\overrightarrow{CB}$=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,梯形ABCD,AB∥CD,△ABC為等邊三角形,AB=1,CD=2,點E,F(xiàn)分別為AB,AD的中點,將△ABC沿AC折起到AB′C位置,使得CE⊥AD.
(1)求三棱錐B′-ADC的體積;
(2)若P在線段CD上,滿足CE∥平面B′PF,求$\frac{CP}{PD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,若cos(A+2C-B)+sin(B+C-A)=2,且AB=2,則BC=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若對任意不等于1的正數(shù)a,函數(shù)f(x)=ax+2的反函數(shù)的圖象都經(jīng)過點P,則點P的坐標(biāo)是(1,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知圓C的圓心為(2,4),且圓C經(jīng)過點(0,4).
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)過點P(3,-1)作直線l與圓C相交于A,B兩點,AB=2$\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知x,y,z∈R+,求證:$\frac{x}{2x+y+z}$+$\frac{y}{x+2y+z}$+$\frac{z}{x+y+2z}$≤$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求函數(shù)y=4-2sinx-cos2x的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求證:
(1)cos(-210°)•tan(-240°)+sin(-30°)=1.
(2)$\frac{cos(-α-π)•sin(π+α)}{cos(-α)•tan(2π+α)}$=cosα.
(3)sin(-α)•sin(π-α)-2cos2(-α)+1=-cos2α.

查看答案和解析>>

同步練習(xí)冊答案