12.若對(duì)任意不等于1的正數(shù)a,函數(shù)f(x)=ax+2的反函數(shù)的圖象都經(jīng)過點(diǎn)P,則點(diǎn)P的坐標(biāo)是(1,-2).

分析 由指數(shù)函數(shù)可知圖象經(jīng)過點(diǎn)(-2,1),再由反函數(shù)可得.

解答 解:∵當(dāng)x+2=0,即x=-2時(shí),總有a0=1,
∴函數(shù)f(x)=ax+2的圖象都經(jīng)過點(diǎn)(-2,1),
∴其反函數(shù)的圖象必經(jīng)過點(diǎn)P(1,-2)
故答案為:(1,-2)

點(diǎn)評(píng) 本題考查指數(shù)函數(shù)的單調(diào)性和特殊點(diǎn),涉及反函數(shù),屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知全集U={0,1,2,3,4,5,6},集合A={x∈Z|x2-5x+6≤0},集合B={1,3,4,6},則集合A∩(∁UB)=( 。
A.{0}B.{2}C.{0,1,2,4,6}D.{0,2,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,長方體ABCD-A′B′C′D′中,AD=2AB=2AA′=2.
(1)求證:A′B⊥平面ADC′;
(2)求二面角D′-AC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{2x+b}{{1+{x^2}}}$是定義在(m,1)上的奇函數(shù)(a,b,m為常數(shù)).
(1)確定函數(shù)f(x)的解析式及定義域;
(2)判斷并利用定義證明f(x)在(m,1)上的單調(diào)性;
(3)若對(duì)任意t∈[-2,2],是否存在實(shí)數(shù)x使f(tx-2)+f(x)<0恒成立?若存在,則求出實(shí)數(shù)x的取值范圍,若不存在則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知P為直線y=kx+b上一動(dòng)點(diǎn),若點(diǎn)P與原點(diǎn)均在直線x-y+2=0的同側(cè),則k,b滿足的條件分別為(  )
A.k=1,b<2B.k=1,b>2C.k≠1,b<2D.k≠1,b>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.圓C:x2+y2-6x-2y+1=0的周長是6π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線y=-x2+ax+$\frac{1}{2}$與直線y=2x.
(1)求證:拋物線與直線相交;
(2)設(shè)直線與拋物線的交點(diǎn)分別為A,B,當(dāng)a∈(1,4)時(shí),求線段AB長度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)直線l:ρcosθ+$\sqrt{3}$ρsinθ=2$\sqrt{2}$與圓C:ρ=2交于A、B兩點(diǎn).
(Ⅰ)求A、B兩點(diǎn)的極坐標(biāo);
(Ⅱ)設(shè)P是圓C上的動(dòng)點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求滿足下列條件的雙曲線方程:
(1)以2x±3y=0為漸近線,且經(jīng)過點(diǎn)(1,2);
(2)離心率為$\frac{5}{4}$,虛半軸長為2;
(3)與橢圓x2+5y2=5共焦點(diǎn)且一條漸近線方程為y-$\sqrt{3}$x=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案