17.將函數(shù)y=f(x)圖象上每一點的橫坐標伸長到原來的2倍,再向左平移$\frac{π}{2}$個單位長度,得到函數(shù)y=$\frac{1}{2}$sinx的圖象,試求函數(shù)y=f(x)的解析式.

分析 由條件利用誘導公式、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得函數(shù)y=f(x)的解析式.

解答 解:由題意可得函數(shù)y=$\frac{1}{2}$sinx的圖象向右平移$\frac{π}{2}$個單位長度,可得y=$\frac{1}{2}$sin(x-$\frac{π}{2}$)的圖象,
再把所得圖象上每一點的橫坐標變?yōu)樵瓉淼?\frac{1}{2}$倍,得到f(x)=$\frac{1}{2}$sin(2x-$\frac{π}{2}$)=-$\frac{1}{2}$cos2x 的圖象,
即f(x)=-$\frac{1}{2}$cos2x.

點評 本題主要考查誘導公式的應用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.設函數(shù)f(x)=log2(4x)•log2(2x)的定義域為[$\frac{1}{4}$,4],
(1)若t=log2x,求t的取值范圍;
(2)求y=f(x)的最大值與最小值,并求出最值時對應的x的值.
(3)解不等式f(x)-6>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)y=sinx+cosx+2(x∈[0,$\frac{π}{2}$])的最小值是( 。
A.2-$\sqrt{2}$B.2+$\sqrt{2}$C.3D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設△ABC的內角A,B,C的對邊分別為a,b,c,且滿足sinC=2(1-cosC).
(1)求cosC;
(2)若c=2,且2sinAcosC=sinB,求b的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)y=$(3+2x-{x}^{2})^{-\frac{1}{2}}$的單調遞減區(qū)間是(  )
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知四棱錐P-ABCD的底面為菱形,且PA⊥平面ABCD,M為四邊形ABCD所在平面內一點,E為PC的中點,PB=2,則(1)PC⊥BD;(2)直線BE∥平面PAD;(3)點M到直線PA與BC的距離相等,則點M的軌跡方程為拋物線;(4)VP-ABCD的最大值為$\frac{16\sqrt{3}}{27}$,以上結論正確的是(1)(3)(4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.半徑為1的圓O內切于正方形ABCD,正六邊形EFGHPR內接于圓O,當EFGHPR繞圓心O旋轉時,$\overrightarrow{AE}$•$\overrightarrow{OF}$的取值范圍是( 。
A.[1-$\sqrt{2}$,1+$\sqrt{2}$]B.[-1$-\sqrt{2}$,-1+$\sqrt{2}$]C.[$\frac{1}{2}$-$\sqrt{2}$,$\frac{1}{2}$$+\sqrt{2}$]D.[$-\frac{1}{2}$-$\sqrt{2}$,$-\frac{1}{2}$+$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=f(x),且在(0,1)上,滿足f(x)=$\frac{{x}^{2}-x}{2}$,則f(-2016$\frac{1}{2}$)=( 。
A.0B.$\frac{1}{4}$C.-$\frac{1}{8}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知sinα+cosα=$\frac{1}{3}$,則tanα+$\frac{cosα}{sinα}$+$\frac{5}{4}$的值為-1.

查看答案和解析>>

同步練習冊答案