分析 (1)△ABC中,利用二倍角的余弦公式公式、同角三角函數(shù)的基本關系求得cosC的值.
(2)由條件利用正弦定理可得cosC=$\frac{2a}$=$\frac{3}{5}$,即5b=6a,再利用余弦定理求得b的值.
解答 解:(1)△ABC中,∵sinC=2(1-cosC),∴sinC=2-2cosC,
即 2sin$\frac{C}{2}$•cos$\frac{C}{2}$=2-2(1-2${sin}^{2}\frac{C}{2}$)=4${sin}^{2}\frac{C}{2}$,又sin$\frac{C}{2}$≠0,
∴cos$\frac{C}{2}$=2sin$\frac{C}{2}$,∴tan$\frac{C}{2}$=$\frac{1}{2}$,tanC=$\frac{2tan\frac{C}{2}}{1{-tan}^{2}\frac{C}{2}}$=$\frac{1}{1-\frac{1}{4}}$=$\frac{4}{3}$,
故C為銳角.
再根據(jù)$\frac{sinC}{cosC}$=$\frac{4}{3}$,sin2C+cos2C=1,求得cosC=$\frac{3}{5}$.
(2)若c=2,且2sinAcosC=sinB,由正弦定理可得2acosC=b,
故 cosC=$\frac{2a}$=$\frac{3}{5}$,∴5b=6a.
再由余弦定理可得 c2=4=a2+b2-2ab•cosC=${(\frac{5b}{6})}^{2}$+b2-2•$\frac{5b}{6}$•b•$\frac{3}{5}$,
求得b=$\frac{12}{5}$.
點評 本題主要考查二倍角的余弦公式公式、同角三角函數(shù)的基本關系,正弦定理和余弦定理的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {3,-1} | B. | {x=3,y=-1} | C. | {(3,-1)} | D. | (3,-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2015+$\frac{\sqrt{2015}}{2015}$ | B. | 2015-$\frac{\sqrt{2015}}{2015}$ | C. | 2015 | D. | $\sqrt{2014}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com