17.P是等腰直角三角形ABC所在平面外一點(diǎn),斜邊AB=PC,A是P在平面ABC上的射影,求:PC與平面ABC所成的角.

分析 設(shè)AC=1,則PC=AB=$\sqrt{2}$,于是cos∠PCA=$\frac{AC}{PC}$=$\frac{\sqrt{2}}{2}$.

解答 解:∵A是P在平面ABC上的射影,
∴PA⊥平面ABC,
∴∠PCA為PC與平面ABC所成的角.
設(shè)AC=1,則PC=AB=$\sqrt{2}$.
∴cos∠PCA=$\frac{AC}{PC}$=$\frac{\sqrt{2}}{2}$,
∴∠PCA=45°.
∴PC與平面ABC所成的角為45°.

點(diǎn)評(píng) 本題考查了線面角的定義與計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1=2an+2n,數(shù)列{bn}滿足bn=$\frac{40\sqrt{2}-2n}{n}$an,存在m∈N*,使得對(duì)?n∈N*,不等式bn≤bm恒成立.則m的值為27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{|x+1|+|x-1|-m}$的定義域?yàn)镽.
(1)求實(shí)數(shù)m的取值范圍;
(2)若m的最大值為n,當(dāng)正數(shù)a,b滿足$\frac{2}{3a+b}$+$\frac{1}{a+2b}$=n時(shí),求7a+4b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知 Sn是數(shù)列{an}的前n項(xiàng)和,且Sn=2an+n-4.
(1)求a1的值;
(2)若bn=an-1,試證明數(shù)列{bn}為等比數(shù)列;
(3)求數(shù)列{an}的通項(xiàng)公式,并證明:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若x+(x+1)10=a0+a1(x+2)+a2(x+2)2+…+a9(x+2)9+a10(x+2)10,則a1+a3+a5+a7+a9=(  )
A.510B.-511C.512D.-512

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.關(guān)天x的方程x2+4x-a=0在區(qū)間[-3,0]上有兩個(gè)相異的實(shí)數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( 。
A.y=x3,x∈RB.y=sinx,x∈RC.y=-x,x∈RD.y=($\frac{1}{2}$)x,x∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某工廠生產(chǎn)甲、乙兩種產(chǎn)品.已知生產(chǎn)甲種產(chǎn)品每噸需耗礦石2t、煤2t;生產(chǎn)乙種產(chǎn)品每噸需耗礦石4t、煤2t.如果甲種產(chǎn)品每噸能獲利600元,乙種產(chǎn)品每噸能獲利800元.工廠在生產(chǎn)這兩種產(chǎn)品的計(jì)劃中要求每天消耗礦石不超過(guò)8t、煤不超過(guò)6t.每天甲、乙兩種產(chǎn)品應(yīng)各生產(chǎn)多少能獲利最大?最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在△ABC中,AB=BC=3,AC=4,若$\overrightarrow{AC}$+2$\overrightarrow{DC}$=3$\overrightarrow{BC}$,則向量$\overrightarrow{CD}$在$\overrightarrow{CA}$方向上的投影為( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案