12.將下列參數(shù)方程(t為參數(shù))化成普通方程,并說明表示什么曲線:
(1)$\left\{\begin{array}{l}{x=\sqrt{{t}^{2}+2t+3}}\\{y=\sqrt{{t}^{2}+2t+2}}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x=sint+cost}\\{y=sintcost}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{x=t+\frac{1}{t}-1}\\{y=t-\frac{1}{t}+1}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{x=\frac{1-{t}^{2}}{1+{t}^{2}}}\\{y=\frac{2t}{1+{t}^{2}}}\end{array}\right.$;
(5)$\left\{\begin{array}{l}{x=\frac{1-t}{1+t}}\\{y=\frac{2t}{1+t}}\end{array}\right.$;
(6)$\left\{\begin{array}{l}{x=\frac{2}{1+{t}^{2}}}\\{y=\frac{2t}{1+{t}^{2}}}\end{array}\right.$.

分析 根據(jù)參數(shù)方程的兩式之間的關(guān)系消參數(shù),得到普通方程,根據(jù)普通方程判斷曲線類型.

解答 解:(1)x2-y2=1,表示雙曲線的一支.
(2)x2+2y=1,即x2=-2(y-$\frac{1}{2}$),表示拋物線.
(3)(x+1)2-(y-1)2=4,表示雙曲線.
(4)x2+y2=1,表示圓.
(5)x+y=1,表示直線.
(6)(x-1)2+y2=1,表示圓.

點評 本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,觀察參數(shù)方程的特點是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.用拋擲1枚一角硬幣和1枚五分硬幣來模擬孟德爾的豌豆實驗,設(shè)2枚硬幣的正面對應(yīng)DD,一角硬幣的正面與五分硬幣的反面對應(yīng)Dd,一角硬幣的反面與五分硬幣的正面對應(yīng)dD,2枚硬幣的反面對應(yīng)dd,拋擲這2枚硬幣100次,記下出現(xiàn)DD,Dd,dD和dd的次數(shù),考察你的結(jié)果是否基本符合1:1:1:1的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項之和為Sn,且滿足Sn=1-an,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)令bn=(n+1)an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)的圖象是由函數(shù)g(x)=cosx的圖象經(jīng)過如下變換得到:先將g(x)的圖象向右平移$\frac{π}{3}$個單位長度,再將其圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼囊话,縱坐標(biāo)不變,則函數(shù)f(x)的圖象的一條對稱軸方程為( 。
A.x=$\frac{π}{6}$B.x=$\frac{5π}{12}$C.x=$\frac{π}{3}$D.x=$\frac{7π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在正項等比數(shù)列{an}中,a1a3=1,a2+a3=$\frac{4}{3}$,則$\lim_{n→∞}$(a1+a2+…+an)=$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知x>1,則logx9+log27x的最小值是$\frac{{2\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}的前n項和Sn=kn-1(k∈R),且{an}既不是等差數(shù)列,也不是等比數(shù)列,則k的取值集合是{0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$).
(1)求函數(shù)y=f(x)在區(qū)間[-$\frac{π}{12}$,$\frac{π}{2}$]上的最值;
(2)設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,滿足c=$\sqrt{3}$,f(C)=1且sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知l是直線,α、β是兩個不同的平面,下列命題中的真命題是④.(填所有真命題的序號)
①若l∥α,l∥β,則α∥β      ②若α⊥β,l∥α,則l⊥β
③若l∥α,α∥β,則l∥β      ④若l⊥α,l∥β,則α⊥β

查看答案和解析>>

同步練習(xí)冊答案