10.已知i是虛數(shù)單位,且$z={(\frac{1-i}{1+i})^{2016}}$+i的共軛復(fù)數(shù)為$\overline{z}$,則z$•\overline{z}$等于(  )
A.2B.1C.0D.-l

分析 $\frac{1-i}{1+i}$=$\frac{(1-i)^{2}}{(1+i)(1-i)}$=-i.$z={(\frac{1-i}{1+i})^{2016}}$+i=[(-i)4]504,進(jìn)而得出.

解答 解:∵$\frac{1-i}{1+i}$=$\frac{(1-i)^{2}}{(1+i)(1-i)}$=$\frac{-2i}{2}$=-i.
∴$z={(\frac{1-i}{1+i})^{2016}}$+i=[(-i)4]504=1+i,
其共軛復(fù)數(shù)為$\overline{z}$=1-i,
則z$•\overline{z}$=(1+i)(1-i)=2.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、周期性、指數(shù)運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)方程|x2+3x-3|=a的解的個(gè)數(shù)為m,則m不可能等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某人經(jīng)營(yíng)一個(gè)抽獎(jiǎng)游戲,顧客花費(fèi)2元可購(gòu)買一次游戲機(jī)會(huì),每次游戲中,顧客從裝有1個(gè)人黑球,3個(gè)紅球,6個(gè)白球的不透明袋子中依次不放回地摸出3個(gè)球(除顏色外其他都相同),根據(jù)摸出的球的顏色情況進(jìn)行兌獎(jiǎng),顧客獲得一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)、四等獎(jiǎng)時(shí)分別可領(lǐng)取獎(jiǎng)金a元、10元、5元、1元.若經(jīng)營(yíng)者將顧客摸出的3個(gè)球的顏色情況分成以下類別:A:1個(gè)黑球2個(gè)紅球;B:3個(gè)紅球;C:恰有1個(gè)白球;D:恰有2個(gè)白球;E:3個(gè)白球.且經(jīng)營(yíng)者計(jì)劃將五種類別按照發(fā)生機(jī)會(huì)從小到大的順序分別對(duì)應(yīng)中一等獎(jiǎng)、中二等獎(jiǎng)、中三等獎(jiǎng)、中四等獎(jiǎng)、不中獎(jiǎng)五個(gè)層次.
(1)請(qǐng)寫出一至四等獎(jiǎng)分別對(duì)應(yīng)的類別(寫出字母即可);
(2)若經(jīng)營(yíng)者不打算在這個(gè)游戲的經(jīng)營(yíng)中虧本,求a的最大值;
(3)若a=50,當(dāng)顧客摸出的第一個(gè)球是紅球時(shí),求他領(lǐng)取的獎(jiǎng)金的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1且4Sn=n(an+an+1).
(1)求a2,a3,a4;
(2)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明;
(3)設(shè)數(shù)列{$\frac{{a}^{n}}{{2}^{n}}$}的前n項(xiàng)和為Tn,求證Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)$y=sinx({-\frac{π}{3}<x<\frac{2π}{3}})$的值域用區(qū)間表示為(-$\frac{\sqrt{3}}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且a1=-2,an+1=-$\frac{{S}_{n}^{2}}{1+{S}_{n}}$,n∈N*,則Sn=$\frac{2}{2n-3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),當(dāng)x≤0時(shí),f(x)=x+2,那么不等式2f(x)-1>0的解集是(-$\frac{3}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知:x、y、z是正實(shí)數(shù),且x+2y+3z=1,
(1)求$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$的最小值;
(2)求證:x2+y2+z2≥$\frac{1}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知復(fù)數(shù)z=cosθ+isinθ.
(1)求z2和z3;
(2)利用歸納推理推測(cè)zn的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案