分析 設(shè)z=x+$\frac{2}{x}$i(x∈R,x≠0),利用復(fù)數(shù)模的計算公式、基本不等式的性質(zhì)即可得出.
解答 解:設(shè)z=x+$\frac{2}{x}$i(x∈R,x≠0),
則|z|=$\sqrt{{x}^{2}+\frac{4}{{x}^{2}}}$≥$\sqrt{2×\sqrt{{x}^{2}•\frac{4}{{x}^{2}}}}$=2,當(dāng)且僅當(dāng)x=$±\sqrt{2}$時取等號,
故答案為:2.
點評 本題考查了復(fù)數(shù)的模的計算公式、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}+ln2$ | B. | $\frac{1}{2}-ln2$ | C. | -1+ln2 | D. | 1+ln2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $S_{23}^{\;}$ | B. | S24 | C. | S25 | D. | S26 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{9}$ | B. | $\frac{17}{22}$ | C. | $\frac{10}{13}$ | D. | $\frac{23}{30}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2|x| | B. | y=lnx | C. | $y={x^{\frac{1}{3}}}$ | D. | $y=x+\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com