【題目】已知,

(Ⅰ)求的值域 ;

(Ⅱ)若時,,求的取值范圍.

【答案】(1)(2)

【解析】試題分析:(1)先求函數(shù)導(dǎo)數(shù),再導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)函數(shù)符號變化規(guī)律,確定函數(shù)單調(diào)性,結(jié)合函數(shù)圖像確定函數(shù)值域(2)利用變量分離轉(zhuǎn)化為求對應(yīng)函數(shù)最值: ,利用導(dǎo)數(shù)及羅比特法則可得,因此,也可分類討論求最值

試題解析:解:(Ⅰ) 定義域為

,令 ,

當(dāng)時, ;當(dāng)時, ,

當(dāng)時,取得極小值即最小值

函數(shù)的值域為.

(Ⅱ)

,

,令,

①若,,上單調(diào)遞增,

,即

上單調(diào)遞增,,不符合題意;

②若,由

當(dāng)時,,

上單調(diào)遞增,

從而,即,

上單調(diào)遞增,從而,不符合題意;

③若,則,上單調(diào)遞減,

,即,

上單調(diào)遞減,,從而.

綜上所述,的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)2log3x,x[1,9],求y[f(x)]2f(x2)的最大值,及y取最大值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知曲線為參數(shù)),在以為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線,曲線.

(1)求曲線的交點(diǎn)的直角坐標(biāo);

(2)設(shè)點(diǎn) 分別為曲線上的動點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長方體的長和寬都是cm,高是4 cm.

(1)求BCAC′所成的角的度數(shù).

(2)求AA′和BC′所成的角的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市居民自來水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過4噸時,每噸為2.10元,當(dāng)用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費(fèi)y元.已知甲、乙兩用戶該月用水量分別為5x,3x噸.

(1)y關(guān)于x的函數(shù);

(2)如甲、乙兩戶該月共交水費(fèi)40.8元,分別求出甲、乙兩戶該月的用水量和水費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與圓 的公共點(diǎn)的軌跡為曲線,且曲線軸的正半軸相交于點(diǎn).若曲線上相異兩點(diǎn)滿足直線的斜率之積為

1)求的方程;

2)證明直線恒過定點(diǎn),并求定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

某公司經(jīng)銷某產(chǎn)品,第的銷售價格為為常數(shù))(元件),第天的銷售量為(件),且公司在第天該產(chǎn)品的銷售收入為元.

(1)求該公司在第天該產(chǎn)品的銷售收入是多少?

(2)天中該公司在哪一天該產(chǎn)品的銷售收入最大?最大收入為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.直線過點(diǎn).

(1)若直線與曲線交于兩點(diǎn),求的值;

(2)求曲線的內(nèi)接矩形的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù)

(1)當(dāng)時,求上的單調(diào)區(qū)間;

(2)設(shè)函數(shù),當(dāng)有兩個極值點(diǎn)時,總有,求實數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案