分析 (I)利用余弦定理即可得出;
(II)利用倍角公式、和差公式可得:f(x)=$sin(x+\frac{π}{6})$+$\frac{1}{2}$,再利用三角函數(shù)的單調(diào)性與值域可得B,進(jìn)而得出三角形的面積.
解答 解:(Ⅰ)在△ABC中,∵b2+c2-a2=bc,
由余弦定理 a2=b2+c2-2bccosA 可得cosA=$\frac{1}{2}$.
∵0<A<π,
∴A=$\frac{π}{3}$.
(Ⅱ)f(x)=$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$+cos2$\frac{x}{2}$=$\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx+\frac{1}{2}$=$sin(x+\frac{π}{6})$+$\frac{1}{2}$,
當(dāng)x=B時(shí),f(B)=$sin(B+\frac{π}{6})$+$\frac{1}{2}$,
∵A=$\frac{π}{3}$,∴B∈$(0,\frac{2π}{3})$,
∴$\frac{π}{6}$<$B+\frac{π}{6}$$<\frac{5π}{6}$,
∴當(dāng)B+$\frac{π}{6}$=$\frac{π}{2}$時(shí),即B=$\frac{π}{3}$時(shí),f(B)有最大值是$\frac{3}{2}$.
又∵A=$\frac{π}{3}$,∴C=$\frac{π}{3}$.
∴△ABC為等邊三角形.
∴S=$\frac{1}{2}{a^2}sin\frac{π}{3}=\sqrt{3}$.
點(diǎn)評(píng) 本題考查了余弦定理、倍角公式、和差公式、三角函數(shù)的單調(diào)性與值域、三角形的面積計(jì)算公式,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-4,2) | B. | (-∞,-4)∪(2,+∞) | C. | (2,+∞) | D. | (-∞,-4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com