18.設(shè)p:“若x=a,則x2=4”,q:“若x>a,則2x>1”.
(1)若p為真,求實(shí)數(shù)a的取值范圍;
(2)若p且q為真,求實(shí)數(shù)a的值.

分析 (1)解方程,求出a的值即可;(2)先求出q為真時(shí)的a的范圍,從而求出p且q為真時(shí)的a的值即可.

解答 解:(1)由p:“若x=a,則x2=4”,
得若p為真,則a=2或-2;
(2)由q:“若x>a,則2x>1”,
得若q為真,則a≥0,
若p且q為真,則a=2.

點(diǎn)評(píng) 本題考察了復(fù)合命題的判斷,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2016,且an+2an+1+an+2=0(n∈N*),則S2016=( 。
A.0B.2015C.2016D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=2cos2$\frac{x}{2}$-$\sqrt{3}$sinx.
(1)求函數(shù)f(x)的最小正周期和值域;
(2)設(shè)α∈(-π,0),且f(α-$\frac{π}{6}$)=$\frac{13}{5}$,求sin(2α+$\frac{π}{12}$)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.求通項(xiàng)公式:
(1)在數(shù)列{an}中,若a1=2,an+1=an+ln(1+$\frac{1}{n}$),則an=2+lnn;
(2)在數(shù)列{an}中,若a1=5,an+1=2an+2n+1-1,則an=(n+1)•2n+1;
(3)若an=2an+4n+2,求數(shù)列的通項(xiàng)公式;
(4)a1=1,(n+1)a${\;}_{n+1}^{2}$-na${\;}_{n}^{2}$+an+1an=0(n∈N*且an>0),求數(shù)列的通項(xiàng)an
(5)a1=1,nan=a1+2a2+3a3+…+(n-1)an-1(n≥2,n∈N*),求數(shù)列的通項(xiàng)an;
(6)a1=1,an+1=$\frac{{a}_{n}}{-7{a}_{n}-6}$,求數(shù)列的通項(xiàng)an;
(7)a1=1,若an+1=a${\;}_{n}^{2}$+2an,求數(shù)列的通項(xiàng)an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)集合A={lna},B={x∈Z|x2<2x},若A∪B=A,則a=( 。
A.1B.eC.e2D.$\sqrt{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.點(diǎn)P是拋物線y2=4x上一動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)A(0,-1)的距離與到直線x=-1的距離和的最小值是(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知p:4x2+12x-7≤0,q:a-3≤x≤a+3.
(1)當(dāng)a=0時(shí),若p真q假,求實(shí)數(shù)x的取值范圍;
(2)若p是q的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.命題“若a>1,則a>0”的逆命題是( 。
A.若a>0,則a>1B.若a≤0,則a>1C.若a>0,則a≤1D.若a≤0,則a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)$f(x)=cosx(sinx+\sqrt{3}cosx)-\frac{{\sqrt{3}}}{2}$,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)若x∈(0,π),求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案