5.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{2^x},x≤0}\\{{{log}_2}x,x>0}\end{array}}\right.$
(1)在所給的平面直角坐標(biāo)系中畫出函數(shù)f(x)的圖象;
(2)利用圖象求f(x)=$\frac{1}{2}$時(shí)x的值;
(3)當(dāng)0<f(x)<$\frac{1}{2}$時(shí),求x的取值范圍.

分析 (1)分段作出函數(shù)圖象;
(2)觀察圖象得出x的值;
(3)分x≤0和x>0兩種情況討論解出x.

解答 解:(1)f(x)的圖象如圖所示:
(2)①若x≤0,則2x=$\frac{1}{2}$,解得x=-1;
②若x>0,則log2x=$\frac{1}{2}$,解得x=$\sqrt{2}$.
綜上,當(dāng)f(x)=$\frac{1}{2}$時(shí)x=-1或x=$\sqrt{2}$.
(3)①若x≤0,則0<2x$<\frac{1}{2}$,解得x<-1,
②若x>0,則0<log2x$<\frac{1}{2}$,解得1$<x<\sqrt{2}$.
綜上,當(dāng)$0<f(x)<\frac{1}{2}$時(shí),x的取值范圍是(-∞,-1)∪(1,$\sqrt{2}$).

點(diǎn)評 本題考查了分段函數(shù)的圖象和性質(zhì),常涉及分類討論思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知Sn是等比數(shù)列{an}的前n項(xiàng)和,a1=30,8S6=9S3,設(shè)Tn=a1a2a3…an,則使Tn取得最大值的n為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在等比數(shù)列{an}中,a1=-3,a2=-6,則a4的值為(  )
A.-24B.24C.±24D.-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=cos2x+sinxcosx-1的最小正周期是π,單調(diào)遞增區(qū)間是[kπ-$\frac{3π}{8}$,2kπ+$\frac{π}{8}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,A1B1的中點(diǎn)是P,過點(diǎn)A1作與截面PBC1平行的截面,則截面的面積是2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={y|y=log2x,0<x<1},B={y|y=($\frac{1}{2}$)x,x>1},則(∁RA)∩B=( 。
A.(0,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{2}$,1)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在△ABC中,AO⊥BC于O,OB=2OA=2OC=4,點(diǎn)D,E,F(xiàn)分別為OA,OB,OC的中點(diǎn),BD與AE相交于H,CD與AF相交于G,將△ABO沿OA折起,使二面角B-OA-C為直二面角.
(Ⅰ)在底面△BOC的邊BC上是否存在一點(diǎn)P,使得OP⊥GH,若存在,請計(jì)算BP的長度;若不存在,請說明理由;
(Ⅱ)求二面角A-GH-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知a>b>0,橢圓C1的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,雙曲線C2的方程為$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,C1與C2的離心率之積為$\frac{{\sqrt{3}}}{2}$,則雙曲線C2的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}的前n項(xiàng)和${S_n}={n^3}$,則a6+a7+a8=387.

查看答案和解析>>

同步練習(xí)冊答案