10.下列函數(shù),在其定義域內(nèi),既是減函數(shù)又是奇函數(shù)的是(  )
A.$y={({\frac{1}{2}})^x}$B.$y={2^{{{log}_2}x}}$C.y=2xD.$y={log_2}{2^{-x}}$

分析 根據(jù)奇函數(shù)圖象的對(duì)稱性,奇函數(shù)定義域的特點(diǎn),指數(shù)函數(shù)圖象,對(duì)數(shù)的運(yùn)算,以及奇函數(shù)的定義便可判斷每個(gè)選項(xiàng)的正誤,從而找出正確選項(xiàng).

解答 解:A.$y=(\frac{1}{2})^{x}$的圖象不關(guān)于原點(diǎn)對(duì)稱,不是奇函數(shù),∴該選項(xiàng)錯(cuò)誤;
B.$y={2}^{lo{g}_{2}x}$的定義域?yàn)椋?,+∞),不關(guān)于原點(diǎn)對(duì)稱,不是奇函數(shù),∴該選項(xiàng)錯(cuò)誤;
C.y=2x的圖象不關(guān)于原點(diǎn)對(duì)稱,不是奇函數(shù),∴該選項(xiàng)錯(cuò)誤;
D.$y=lo{g}_{2}{2}^{-x}=-x$,∴該函數(shù)為奇函數(shù)且為減函數(shù),即該選項(xiàng)正確.
故選:D.

點(diǎn)評(píng) 考查奇函數(shù)的定義,奇函數(shù)圖象的對(duì)稱性,奇函數(shù)定義域的特點(diǎn),以及指數(shù)函數(shù)的圖象,對(duì)數(shù)的運(yùn)算性質(zhì),一次函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如表
廣 告 費(fèi) 用x (萬(wàn)元)4235
銷 售 額y (萬(wàn)元)4926a54
已知由表中4組數(shù)據(jù)求得回歸直線方程$\stackrel{∧}{y}$=8x+14,則表中的a的值為( 。
A.37B.38C.39D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.隨著學(xué)習(xí)的深入我們發(fā)現(xiàn)很多對(duì)事物的看法已經(jīng)顛覆了我們傳統(tǒng)的認(rèn)識(shí),例如直線與曲線有且只有一個(gè)交點(diǎn)并不能說(shuō)直線是曲線的切線,曲線的切線與曲線的切點(diǎn)也不一定只有一個(gè).若在曲線f(x,y)=0上兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為曲線f(x,y)=0的“自公切線”.下列方程:①x2-y2=1;②y=x2-|x|,③y=3sinx+4cosx;④|x|+1=$\sqrt{4-{y}^{2}}$對(duì)應(yīng)的曲線中存在“自公切線”的有( 。
A.①②B.③④C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.直線l過(guò)拋物線C:y2=2px(p>0)的焦點(diǎn)F且與C相交于A,B兩點(diǎn),且AB的中點(diǎn)M的坐標(biāo)為(3,2),則拋物線C的方程為y2=4x或y2=8x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知f(x)是R上最小正周期為2的周期函數(shù),且當(dāng)0≤x<2時(shí),f(x)=x3-x,則函數(shù)y=f(x)的圖象在區(qū)間[0,6]上與x軸的交點(diǎn)的個(gè)數(shù)為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.直線a∥平面α,直線b⊥平面α,則下列說(shuō)法正確的是(  )
A.a∥bB.a⊥bC.a⊥b且異面D.a⊥b且相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.小明射擊一次擊中10環(huán)的概率為0.3,則小明連續(xù)射擊3次恰好擊中10環(huán)2次的概率為0.189.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=x2+mln(x+1).
(1)若函數(shù)f(x)的圖象在(0,f(0))處的切線方程是y=-x,則當(dāng)x∈(0,+∞)時(shí),證明:f(x)<x3;
(2)證明:對(duì)任意的正整數(shù)n,不等式e0+e-1×4+e-2×9+…+e${\;}^{(1-n){n}^{2}}$<$\frac{n(n+3)}{2}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列判斷中錯(cuò)誤的是(  )
A.角α確定時(shí),它在單位圓中的正弦線確定
B.單位圓中有相同正弦線的角相等
C.角α和角α+π具有相同的正切線
D.單位圓中有相同正切線的角的終邊在同一直線上

查看答案和解析>>

同步練習(xí)冊(cè)答案