若函數(shù)y=f(x)(x∈R)滿足f(x)=f(x+2),且當(dāng)x∈[-1,1]時,f(x)=x2,則函數(shù)g(x)=f(x)-|lgx|的零點個數(shù)為 個.
【答案】
分析:確定函數(shù)y=f(x)的周期,構(gòu)造函數(shù)y=f(x),h(x)=|lgx|,則函數(shù)g(x)=f(x)-|lgx|的零點問題轉(zhuǎn)化為圖象的交點問題,結(jié)合圖象,即可得到結(jié)論.
解答:解:∵函數(shù)y=f(x)(x∈R)滿足f(x)=f(x+2),
∴函數(shù)y=f(x)的周期為2
構(gòu)造函數(shù)y=f(x),h(x)=|lgx|,則函數(shù)g(x)=f(x)-|lgx|的零點問題轉(zhuǎn)化為圖象的交點問題,
由于f(x)的最大值為1,所以x>10時,圖象沒有交點,在(0,1)上有一個交點,(1,3),(3,5),(5,7),(7,9)上各有兩個交點,在(9,10)上有一個交點,故共有10個交點,即函數(shù)零點的個數(shù)為10
故答案為:10
點評:本題的考點是函數(shù)零點與方程根的關(guān)系,主要考查函數(shù)零點的定義,關(guān)鍵是正確作出函數(shù)圖象,注意掌握周期函數(shù)的一些常見結(jié)論:若f(x+a)=f(x),則周期為a;若f(x+a)=-f(x),則周期為2a等.