9.設(shè)x∈R,則命題q:x>-1是命題p:x>0的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

分析 根據(jù)題意比較兩個(gè)命題所表示的范圍,根據(jù)集合之間的關(guān)系得到命題之間的關(guān)系即可.

解答 解:因?yàn)槊}p:x>0且命題q:x>-1,
所以x>0表示的范圍比x>-1表示的范圍小.
所以命題q:x>-1是命題p:x>0的必要不充分條件.
故選B.

點(diǎn)評(píng) 本題考查了充要條件的判斷,可以轉(zhuǎn)化為兩個(gè)條件對(duì)應(yīng)的兩個(gè)集合之間的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-4x.
(1)求x∈[0,5]時(shí),求f(x)的值域;
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.記定點(diǎn)M ($\frac{5}{2}$,3)與拋物線y2=2x上的點(diǎn)P之間的距離為d1,P到拋物線的準(zhǔn)線l距離為d2,則d1+d2的最小值為( 。
A.$\sqrt{13}$B.2$\sqrt{13}$C.13D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知等比數(shù)列{an}的公比q>0,前n項(xiàng)和為Sn.若2a3,a5,3a4成等差數(shù)列,a2a4a6=64,則q=2,Sn=$\frac{1}{2}$(2n-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.用函數(shù)單調(diào)性的定義證明:函數(shù)$f(x)=\frac{x+1}{x-1}$在區(qū)間[2,6]上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$為單位向量且互相垂直,則($\overrightarrow{a}$+2$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)等于(  )
A.2B.0C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.給定函數(shù)f(x),若對(duì)于定義域中的任意x,都有f(x)≥x恒成立,則稱函數(shù)f(x)為“爬坡函數(shù)”.
(1)證明:函數(shù)f(x)=x2+1是爬坡函數(shù);
(2)若函數(shù)f(x)=4x+m•2x+1+x+2m2-4是爬坡函數(shù),求實(shí)數(shù)m的取值范圍;
(3)若對(duì)任意的實(shí)數(shù)b,函數(shù)$f(x)={x^2}+bx+c-\frac{4}$都不是爬坡函數(shù),求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在正方形ABCD的邊長(zhǎng)為2,$\overrightarrow{DE}=2\overrightarrow{EC}$,$\overrightarrow{DF}=\frac{1}{2}(\overrightarrow{DC}+\overrightarrow{DB})$,則$\overrightarrow{BE}•\overrightarrow{DF}$的值為( 。
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{10}{3}$D.$-\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)F1、F2分別是雙曲線C:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的左右焦點(diǎn),過(guò)F2的直線交雙曲線于P,Q兩點(diǎn),若|PQ|=10,則△PQF1的周長(zhǎng)為32.

查看答案和解析>>

同步練習(xí)冊(cè)答案