6.P為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上異于左右頂點A1,A2的任意一點,則直線PA1與PA2的斜率之積為定值-$\frac{^{2}}{{a}^{2}}$,將這個結(jié)論類比到雙曲線,得出的結(jié)論為:P為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上異于左右頂點A1,A2的任意一點,則(  )
A.直線PA1與PA2的斜率之和為定值$\frac{{a}^{2}}{^{2}}$
B.直線PA1與PA2的斜率之積為定值$\frac{{a}^{2}}{^{2}}$
C.直線PA1與PA2的斜率之和為定值$\frac{^{2}}{{a}^{2}}$
D.直線PA1與PA2的斜率之積為定值$\frac{^{2}}{{a}^{2}}$

分析 由已知橢圓的性質(zhì)類比可得直線PA1與PA2的斜率之積為定值$\frac{^{2}}{{a}^{2}}$.然后加以證明即可.

解答 解:設(shè)P(x0,y0)為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上異于左右頂點A1,A2的任意一點,
則A1(-a,0),A2(a,0),
∴${k}_{P{A}_{1}}•{k}_{P{A}_{2}}$=$\frac{{y}_{0}}{{x}_{0}+a}•\frac{{y}_{0}}{{x}_{0}-a}=\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-{a}^{2}}$,
又P(x0,y0)在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1上,
∴${{y}_{0}}^{2}=\frac{^{2}}{{a}^{2}}({{x}_{0}}^{2}-{a}^{2})$,
∴${k}_{P{A}_{1}}•{k}_{P{A}_{2}}$=$\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-{a}^{2}}=\frac{^{2}}{{a}^{2}}$,
∴直線PA1與PA2的斜率之積為定值$\frac{^{2}}{{a}^{2}}$.
故選:D.

點評 本題考查橢圓與雙曲線的簡單性質(zhì),訓練了類比推理思想方法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知θ∈(30°,65°),那么2θ是( 。
A.第一象限角B.第二象限角
C.小于180°的正角D.第一或第二象限角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設(shè)n∈N*,試比較3n和(n+1)!的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設(shè)F1,F(xiàn)2是橢圓$\frac{x^2}{4}+{y^2}=1$的兩個焦點,點P在橢圓上,且F1P⊥PF2,則△F1PF2的面積為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知橢圓$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1上點P到某一個焦點的距離為3,則點P到另一個焦點的距離為( 。
A.3B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知點A(-1,0),B(1,0)直線AM,BM相交于點M,且kMA×kMB=-2.
(1)求點M的軌跡C的方程;
(2)過定點F(0,1)作直線PQ與曲線C交于P、Q兩點,△OPQ的面積是否存在最大值,若存在,求出△OPQ面積的最大值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)過點$(\sqrt{2},\;\;0)$和(0,1),其右焦點為F.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F的直線l交橢圓C于A,B兩點,若$\overrightarrow{AF}=3\overrightarrow{FB}$,求|$\overrightarrow{OA}+\overrightarrow{OB}$|的值(其中O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.橢圓$\frac{{x}^{2}}{4}$+y2=1上的點到直線x-y+3$\sqrt{5}$=0的距離的最小值是$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知圓x2+y2-2x-4y+a=0上有且僅有一個點到直線3x-4y-15=0的距離為1,則實數(shù)a的取值情況為( 。
A.(-∞,5)B.-4C.-4或20D.-11

查看答案和解析>>

同步練習冊答案