8.已知θ∈(30°,65°),那么2θ是( 。
A.第一象限角B.第二象限角
C.小于180°的正角D.第一或第二象限角

分析 根據(jù)象限角和軸線角的定義直接判斷即可.

解答 解:∵θ∈(30°,65°),
∴2θ∈(60°,130°),
∴2θ屬于第一象限或第二象限或軸線角,
故選:C.

點評 本題考查了象限角和軸線角,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.求函數(shù)y=$\frac{x+1}{(x+5)(x+2)}$(x>-1)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)y=lg(1-2cos2x)
①求函數(shù)的最小正周期.
②定義域和值域.
③判斷函數(shù)的奇偶性.
④求函數(shù)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知1<x<2,化簡$\sqrt{{x}^{2}-2x+1}$+$\sqrt{4-4x+{x}^{2}}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在與360(rad)角終邊相同的角中,絕對值最小的角是360-114π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.乘積(a1+a2+a3)(b1+b2+b3)(c1+c2+c3+c4+c5)展開后共有多少項?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在△ABC中,a、b、c分別為A、B、C的對邊,a=$\sqrt{6}$,b=4,cosAsin(A+B)-sin2A=0.
(1)求c的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)y=-2cos($\frac{x}{2}$+$\frac{π}{3}$)在區(qū)間($\frac{28}{5}$π,a]上是單調函數(shù),則實數(shù)a的最大值為(  )
A.$\frac{17π}{3}$B.C.$\frac{20π}{3}$D.$\frac{22π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.P為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上異于左右頂點A1,A2的任意一點,則直線PA1與PA2的斜率之積為定值-$\frac{^{2}}{{a}^{2}}$,將這個結論類比到雙曲線,得出的結論為:P為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上異于左右頂點A1,A2的任意一點,則(  )
A.直線PA1與PA2的斜率之和為定值$\frac{{a}^{2}}{^{2}}$
B.直線PA1與PA2的斜率之積為定值$\frac{{a}^{2}}{^{2}}$
C.直線PA1與PA2的斜率之和為定值$\frac{^{2}}{{a}^{2}}$
D.直線PA1與PA2的斜率之積為定值$\frac{^{2}}{{a}^{2}}$

查看答案和解析>>

同步練習冊答案