19.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{3x-y-3≤0}\\{x≥0,y≥0}\end{array}\right.$,則z=3x+2y的最大值為12.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.

解答 解:作出可行域如圖,
將z=3x+2y變形為$y=-\frac{3}{2}x+\frac{z}{2}$,
當(dāng)目標(biāo)函數(shù)$y=-\frac{3}{2}x+\frac{z}{2}$過點(diǎn)A時(shí),z取最大值.
聯(lián)立$\left\{\begin{array}{l}{x-y+1=0}\\{3x-y-3=0}\end{array}\right.$,解得A(2,3).
代入可得zmax=3×2+2×3=12.
故答案為:12.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.劉徽在他的《九章算術(shù)注》中提出一個(gè)獨(dú)特的方法來計(jì)算球體的體積:他不直接給出球體的體積,而是先計(jì)算另一個(gè)叫“牟合方蓋”的立體的體積.劉徽通過計(jì)算,“牟合方蓋”的體積與球的體積之比應(yīng)為$\frac{4}{π}$.后人導(dǎo)出了“牟合方蓋”的$\frac{1}{8}$體積計(jì)算公式,即$\frac{1}{8}$V=r3-V方蓋差,r為球的半徑,也即正方形的棱長(zhǎng)均為2r,為從而計(jì)算出V=$\frac{4}{3}$πr3.記所有棱長(zhǎng)都為r的正四棱錐的體積為V,棱長(zhǎng)為2r的正方形的方蓋差為V方蓋差,則$\frac{{V}_{方蓋差}}{{V}_{正}}$=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在3張獎(jiǎng)券中,一等獎(jiǎng)、二等獎(jiǎng)各有1張,另1張無獎(jiǎng).甲、乙兩人各抽取1張,則恰有一人獲獎(jiǎng)的概率為(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.正三棱錐O-ABC的每一條棱長(zhǎng)均為1,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(0≤x,y,z≤1),且滿足1≤x+y+z≤2,則動(dòng)點(diǎn)P的軌跡所圍成的區(qū)域的體積是$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)集合M={-1,0,1},集合An={(x1,x2,x3,…,xn)|xi∈M,i=1,2…,n},集合An中滿足條件“1≤|x1|+|x2|+…+|xn|≤m”的元素個(gè)數(shù)記為${S}_{m}^{n}$.
(1)求${S}_{2}^{2}$和${S}_{2}^{4}$的值;
(2)當(dāng)m<n時(shí),求證:${S}_{m}^{n}$<3n+2m+1-2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知p:“a≤t+$\frac{16}{t}$對(duì)t∈(0,+∞)恒成立”,q:“直線x-2y+a=0與直線x-2y+3=0的距離大于$\sqrt{5}$”,則¬p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.三棱錐P-ABC中,△ABC和△PBC是等邊三角形,側(cè)面PBC⊥面ABC,AB=2$\sqrt{3}$,則三棱錐外接球表面積是(  )
A.18πB.19πC.20πD.21π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定義一種運(yùn)算:$|\left.\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}\right.|$=a1•a4-a2•a3,那么函數(shù)f(x)=$|\left.\begin{array}{l}{\sqrt{3}}&{cosx}\\{1}&{sinx}\end{array}\right.|$的圖象向左平移k(k>0)個(gè)單位后,所得圖象關(guān)于y軸對(duì)稱,則k的最小值應(yīng)為( 。
A.$\frac{2π}{3}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.(x-2y)3(x+y)4的展開式中x3y4項(xiàng)的系數(shù)是( 。
A.3B.12C.17D.35

查看答案和解析>>

同步練習(xí)冊(cè)答案