7.正三棱錐O-ABC的每一條棱長均為1,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(0≤x,y,z≤1),且滿足1≤x+y+z≤2,則動點P的軌跡所圍成的區(qū)域的體積是$\frac{\sqrt{2}}{3}$.

分析 由已知可得動點P的軌跡所圍成的區(qū)域,然后由柱體體積減去兩個三棱錐的體積得答案.

解答 解:如圖,由$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(0≤x,y,z≤1),且滿足1≤x+y+z≤2,
可得動點P的軌跡所圍成的區(qū)域是介于平面ABC與平面EFG之間的部分,

∴$V=OA•OB•sin60°•{h}_{C}-2•\frac{1}{3}{S}_{△OAB}•{h}_{C}$
=$1×1×\frac{\sqrt{3}}{2}×\frac{\sqrt{6}}{3}-2×\frac{1}{3}×\frac{1}{2}×\frac{\sqrt{3}}{2}×\frac{\sqrt{6}}{3}$=$\frac{\sqrt{2}}{3}$.
故答案為:$\frac{\sqrt{2}}{3}$.

點評 本題考查空間向量的坐標(biāo)加法運(yùn)算,考查柱、錐、臺體積的求法,由已知向量等式得到點P的軌跡所圍成的區(qū)域是關(guān)鍵,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=-lnx+$\frac{1}{2}$ax2+(1-a)x+$\frac{1}{2}$a-1(a∈R)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)>0在x∈(0,1)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在數(shù)列{an}中,a1=1,3n-1an=3n-2an-1-2•3n-2+2(n≥2),Sn是數(shù)列{$\frac{{a}_{n}+1}{n}$}的前n項和,當(dāng)不等式$\frac{({3}^{m}+1)({S}_{n}-m)}{{3}^{m}({S}_{n+1}-m)}<1$(m∈N*)恒成立時,m•n的所有可能取值為1,2,4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)y=f(x)+x+2是偶函數(shù),且f(2)=3,則f(-2)=(  )
A.3B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知首項是1的等比數(shù)列{an},a2a6=64,則$\frac{{a}_{5}}{{a}_{3}}$的值是( 。
A.4B.2C.-4D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=sin(2x-$\frac{π}{6}$)的圖象(  )
A.關(guān)于直線x=$\frac{π}{12}$對稱B.關(guān)于直線x=$\frac{5π}{12}$對稱
C.關(guān)于點($\frac{π}{12}$,0)對稱D.關(guān)于點($\frac{5π}{12}$,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{3x-y-3≤0}\\{x≥0,y≥0}\end{array}\right.$,則z=3x+2y的最大值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列an=lg$\frac{n+1}{n}$,Sn為{an}的前n項和,若Sn<2,則項數(shù)n的最大值為( 。
A.98B.99C.100D.101

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=2sin(2x-$\frac{π}{6}$)-1,則下列結(jié)論中錯誤的是( 。
A.f(x)的最小正周期為π
B.f(x)的圖象關(guān)于直線x=$\frac{π}{3}$對稱
C.f(x)在區(qū)間[0,$\frac{π}{4}$]上是增函數(shù)
D.函數(shù)f(x)的圖象可由g(x)=2sin2x-1的圖象向右平移$\frac{π}{6}$個單位得到

查看答案和解析>>

同步練習(xí)冊答案