分析 通過Sn=3n+n2-2與Sn+1=3n+1+(n+1)2-2作差、整理即得結(jié)論.
解答 解:∵Sn=3n+n2-2,
∴Sn+1=3n+1+(n+1)2-2,
兩式相減得:an+1=2•3n+2n+1=$\frac{2}{3}•{3}^{n+1}$+2(n+1)-1,
又∵a1=3+1-2=2不滿足上式,
∴an=$\left\{\begin{array}{l}{2,}&{n=1}\\{\frac{2}{3}•{3}^{n}+2n-1,}&{n≥2}\end{array}\right.$,
故答案為:$\left\{\begin{array}{l}{2,}&{n=1}\\{\frac{2}{3}•{3}^{n}+2n-1,}&{n≥2}\end{array}\right.$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com