18.設(shè)l,m是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列命題為真命題的序號(hào)是(3)
(1)若m∥l,m∥α,則l∥α;
(2)若m⊥α,l⊥m,則l∥α;
(3)若α∥β,l⊥α,m∥β,則l⊥m;
(4)若m?α,m∥β,l?β,l∥α,則α∥β

分析 根據(jù)命題條件舉出反例或給出證明逐項(xiàng)判斷各命題真假.

解答 解:對(duì)于(1),當(dāng)l?α?xí)r,結(jié)論顯然不成立;故(1)為假命題.
對(duì)于(2),當(dāng)l?α?xí)r,結(jié)論顯然不成立;故(2)為假命題.
對(duì)于(3),∵α∥β,l⊥α,∴l(xiāng)⊥β,
∵m∥β,∴存在直線m′?β,使得m∥m′,
∴l(xiāng)⊥m′,∴l(xiāng)⊥m.故命題(3)正確.
對(duì)于(4),若α∩β=b,m∥b∥l,顯然符合條件,但結(jié)論不成立,故(4)為假命題.
故答案為:(3).

點(diǎn)評(píng) 本題考查了空間線面位置關(guān)系的性質(zhì)與判斷,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)求函數(shù)f(x)=x3-3x2-9x,x∈[-4,4]的最值
(2)求函數(shù)$g(x)=\frac{1}{2}{x^2}+4x-5lnx$的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x3-x2-ax+b(a,b∈R),當(dāng)x=1時(shí)f(x)取得極值2.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,b]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)集合A={x|-1≤x≤2},B={x|(x-a)[x-(a+2)]≤0}.
(1)當(dāng)a=1時(shí),求A∪B;
(2)若“x∈A”是“x∈B”的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知sinθ+cosθ=$\frac{1}{2}$,則sin3θ+cos3θ=$\frac{11}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某學(xué)校對(duì)高三學(xué)生一次模擬考試的數(shù)學(xué)成績(jī)進(jìn)行分析,隨機(jī)抽取了部分學(xué)生的成績(jī),得到如圖所示的成績(jī)頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖估計(jì)這次考試全校學(xué)生數(shù)學(xué)成績(jī)的眾數(shù)、中位數(shù)和平均值;
(Ⅱ)若成績(jī)不低于80分為優(yōu)秀成績(jī),視頻率為概率,從全校學(xué)生中有放回的任選3名學(xué)生,用變量ξ表示3名學(xué)生中獲得優(yōu)秀成績(jī)的人數(shù),求變量ξ的分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,四邊形ABCD是矩形,沿直線BD將△ABD翻折成△A′BD,異面直線CD與A′B所成的角為α,則(  
A.α<∠A′CAB.α>∠A′CAC.α<∠A′CDD.α>∠A′CD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合M={x|x2-2x≤0},N={x|-2<x<1},則M∩N=( 。
A.(-2,1)B.[0,1)C.(1,2]D.(-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列四個(gè)函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A.y=sinxB.y=cosxC.y=x2D.y=x0

查看答案和解析>>

同步練習(xí)冊(cè)答案