【題目】公交車的數(shù)量太多容易造成資源浪費,太少又難以滿足乘客的需求,為了合理布置車輛,公交公司在2路車的乘客中隨機調(diào)查了50名乘客,經(jīng)整理,他們候車時間(單位:)的莖葉圖如下:

(Ⅰ)將候車時間分為八組,作出相應的頻率分布直方圖;

(Ⅱ)若公交公司將2路車發(fā)車時間調(diào)整為每隔15發(fā)一趟車,那么上述樣本點將發(fā)生變化(例如候車時間為9的不變,候車時間為17的變?yōu)?/span>2),現(xiàn)從2路車的乘客中任取5人,設其中候車時間不超過10的乘客人數(shù)為,求的數(shù)學期望.

【答案】(Ⅰ)見解析;(Ⅱ)

【解析】試題分析:

(Ⅰ)根據(jù)莖葉圖可得落在各組內(nèi)的頻數(shù),求得頻率后可得的值,根據(jù)所得數(shù)據(jù)可得頻率分布直方圖.(Ⅱ)由題意得候車時間中不超過10分鐘的數(shù)據(jù)共有34個,根據(jù)古典概型概率公式可得所求概率為0.68.

試題解析:

(Ⅰ)由莖葉圖可得落入分組區(qū)間內(nèi)的頻數(shù)依次為4、4、10、12、8、6、4、2,

于是可得各組分組區(qū)間相應的的值依次為0.02、0.02、0.05、0.06、0.04、0.03、0.02、

0.01,

依此畫出頻率分布直方圖如下圖所示.

(Ⅱ)調(diào)整為間隔15分鐘發(fā)一趟車之后,候車時間原本不超過10分鐘的數(shù)據(jù)就有14個,發(fā)生了變化的候車時間中不超過10分鐘的數(shù)據(jù)又增加了20個,共計34個.

所以候車時間不超過10分鐘的頻率為

由此估計一名乘客候車時間不超過10分鐘的概率為0.68

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】幾千年的滄桑沉淀,凝練了西樵山的美,清幽秀麗的自然風光,文化底蘊厚重的旅游,古樸自然的民俗風情.自明清以來,文人雅士,群賢畢至,旅人游子,紛至沓來,使秀美的西樵山成為名嗓南粵的旅游熱點.如圖,游客從某旅游景區(qū)的景點處下山至處有兩種路徑,一種是從沿直線步行到,另一種是先從乘景區(qū)觀光車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為50/分鐘,在甲出發(fā)2分鐘后,乙從乘觀光車到,在處停留20分鐘后,再從勻速步行到.假設觀光車勻速直線運行的速度為250/分鐘,山路長為2340米,經(jīng)測量,,.

1)求觀光車路線的長;

2)問乙出發(fā)多少分鐘后,乙在觀光車上與甲的距離最短?

3)為使兩位游客在處互相等待的時間不超過3分鐘,乙步行的速度應控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,且Sn=2n-1(n∈N*).

(1)求數(shù)列{an}的通項公式;

(2)bn=log4an+1,求{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題是真命題的是(  )

A. φ∈R,函數(shù)f(x)=sin(2xφ)都不是偶函數(shù)

B. α,β∈R,使cos(αβ)=cosα+cosβ

C. 向量a=(2,1),b=(-1,0),則ab的方向上的投影為2

D. “|x|≤1”是“x≤1”的既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 底面 , , , 為棱的中點.

)求證:

)求證:平面平面

)試判斷與平面是否平行?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 為等邊三角形,平面平面, , , , , 的中點

)求證:

)求二面角的余弦值

平面,求的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)(x∈R)滿足f(-x)=2-f(x),若函數(shù)yyf(x)圖象的交點為(x1y1),(x2,y2),…,(xm,ym),則 (xiyi)=(  )

A. 0 B. m

C. 2m D. 4m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年2月22日上午,山東省省委、省政府在濟南召開山東省全面展開新舊動能轉(zhuǎn)換重大工程動員大會,會議動員各方力量,迅速全面展開新舊動能轉(zhuǎn)換重大工程.某企業(yè)響應號召,對現(xiàn)有設備進行改造,為了分析設備改造前后的效果,現(xiàn)從設備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了200件產(chǎn)品作為樣本,檢測一項質(zhì)量指標值,若該項質(zhì)量指標值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖3是設備改造前的樣本的頻率分布直方圖,表1是設備改造后的樣本的頻數(shù)分布表.

表1:設備改造后樣本的頻數(shù)分布表

(1)完成下面的列聯(lián)表,并判斷是否有99%的把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與設備改造有關(guān);

(2)根據(jù)圖3和表1提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對改造前后設備的優(yōu)劣進行比較;

(3)企業(yè)將不合格品全部銷毀后,根據(jù)客戶需求對合格品進行等級細分,質(zhì)量指標值落在內(nèi)的定為一等品,每件售價240元;質(zhì)量指標值落在內(nèi)的定為二等品,每件售價180元;其它的合格品定為三等品,每件售價120元.根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應等級產(chǎn)品的概率.現(xiàn)有一名顧客隨機購買兩件產(chǎn)品,設其支付的費用為(單位:元),求的分布列和數(shù)學期望.

附:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,圓

(1)若點在圓內(nèi),求的取值范圍;

(2)若過點的圓的切線只有一條,求切線的方程;

(3)當時,過點的直線被圓截得的弦長為,求直線的方程。

查看答案和解析>>

同步練習冊答案