【題目】幾千年的滄桑沉淀,凝練了西樵山的美,清幽秀麗的自然風(fēng)光,文化底蘊(yùn)厚重的旅游,古樸自然的民俗風(fēng)情.自明清以來(lái),文人雅士,群賢畢至,旅人游子,紛至沓來(lái),使秀美的西樵山成為名嗓南粵的旅游熱點(diǎn).如圖,游客從某旅游景區(qū)的景點(diǎn)處下山至處有兩種路徑,一種是從沿直線步行到,另一種是先從乘景區(qū)觀光車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為50米/分鐘,在甲出發(fā)2分鐘后,乙從乘觀光車到,在處停留20分鐘后,再?gòu)?/span>勻速步行到.假設(shè)觀光車勻速直線運(yùn)行的速度為250米/分鐘,山路長(zhǎng)為2340米,經(jīng)測(cè)量,,.
(1)求觀光車路線的長(zhǎng);
(2)問(wèn)乙出發(fā)多少分鐘后,乙在觀光車上與甲的距離最短?
(3)為使兩位游客在處互相等待的時(shí)間不超過(guò)3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
【答案】(1);(2);(3)
【解析】
(1)根據(jù)正弦定理即可確定的長(zhǎng);
(2)假設(shè)乙出發(fā)分鐘后,甲,乙兩游客距離為,此時(shí),甲行走了,乙距離處,利用余弦定理求出乙在觀光車上與甲的距離最短時(shí)的時(shí)間;
(3)設(shè)乙步行的速度為,利用正弦定理求的長(zhǎng),進(jìn)而求出的取值范圍.
(1)在中,因?yàn)?/span>,
所以,
從而=
,
由正弦定理,
得,
所以觀光車路線的長(zhǎng)為
(2)假設(shè)乙出發(fā)分鐘后,甲,乙兩游客距離為,此時(shí),甲行走了,乙距離處,由余弦定理得
因,即,故當(dāng)時(shí),甲,乙兩游客的距離最短;
(3)由正弦定理,
得,
乙從出發(fā)時(shí),甲已經(jīng)走了,
甲還需走才能到達(dá),
設(shè)乙步行的速度為,由題意得
解得,
所以為使兩位游客在處相互等待的時(shí)間不超過(guò)3分鐘,乙步行的速度應(yīng)控制在范圍內(nèi).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在等腰梯形中, , 是梯形的高, , ,現(xiàn)將梯形沿, 折起,使且,得一簡(jiǎn)單組合體如 圖(2)示,已知, 分別為, 的中點(diǎn).
(1)求證: 平面;
(2)若直線與平面所成角的正切值為,求平面與平面所成的銳二面角大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)是定義在上的奇函數(shù),且.
(1)確定的解析式;
(2)判斷并證明在上的單調(diào)性;
(3)解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列說(shuō)法:
①函數(shù)y=2x與函數(shù)y=log2x互為反函數(shù);
②若集合A={x|kx2+4x+4=0}中只有一個(gè)元素,則k=1;
③若,則f(x)=x2-2;
④函數(shù)y=log2(1-x)的單調(diào)減區(qū)間是(-∞,1);
其中所有正確的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)存在極大值,且極大值點(diǎn)為1,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn)的橢圓C的一個(gè)頂點(diǎn)為,焦點(diǎn)在x軸上,右焦點(diǎn)到直線的距離為.
求橢圓的標(biāo)準(zhǔn)方程;
若直線l:交橢圓C于M,N兩點(diǎn),設(shè)點(diǎn)N關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)與點(diǎn)M不重合,且直線與x軸的交于點(diǎn)P,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=x2+(a+1)x+a2(a∈R),若f(x)能表示成一個(gè)奇函數(shù)g(x)和一個(gè)偶函數(shù)h(x)的和.
(1)求g(x)和h(x)的解析式;
(2)若f(x)和g(x)在區(qū)間(-∞,(a+1)2]上都是減函數(shù),求f(1)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C:.
若圓C的切線l在x軸和y軸上的截距相等,且截距不為零,求切線l的方程;
已知點(diǎn)為直線上一點(diǎn),由點(diǎn)P向圓C引一條切線,切點(diǎn)為M,若,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公交車的數(shù)量太多容易造成資源浪費(fèi),太少又難以滿足乘客的需求,為了合理布置車輛,公交公司在2路車的乘客中隨機(jī)調(diào)查了50名乘客,經(jīng)整理,他們候車時(shí)間(單位:)的莖葉圖如下:
(Ⅰ)將候車時(shí)間分為八組,作出相應(yīng)的頻率分布直方圖;
(Ⅱ)若公交公司將2路車發(fā)車時(shí)間調(diào)整為每隔15發(fā)一趟車,那么上述樣本點(diǎn)將發(fā)生變化(例如候車時(shí)間為9的不變,候車時(shí)間為17的變?yōu)?/span>2),現(xiàn)從2路車的乘客中任取5人,設(shè)其中候車時(shí)間不超過(guò)10的乘客人數(shù)為,求的數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com