14.已知:指數(shù)函數(shù)f(x)的圖象經(jīng)過點(diǎn)(2,4).
(1)求函數(shù)f(x)的解析式;
(2)若f(x-1)<1,求x的取值范圍.

分析 (1)設(shè)f(x)=ax,利用待定系數(shù)法進(jìn)行求解.
(2)根據(jù)指數(shù)函數(shù)的單調(diào)性,解指數(shù)不等式即可.

解答 解:(1)設(shè)f(x)=ax,
∵f(x)的圖象經(jīng)過點(diǎn)(2,4).
∴f(2)=a2=4,則a=2,
即f(x)=2x
(2)若f(x-1)<1,則2x-1<1,即x-1<0,
得x<1,即不等式的解集為(-∞,1).

點(diǎn)評(píng) 本題主要考查指數(shù)函數(shù)解析式和單調(diào)性的應(yīng)用,利用待定系數(shù)法求出函數(shù)的解析式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)f(x)=p(x-$\frac{1}{x}$)-2lnx(p是實(shí)數(shù))在其定義域內(nèi)為增函數(shù),則p的取值范圍為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)f(x)在[a,b]上的圖象是連續(xù)不斷的一條曲線,且a≤f(x)≤b,試問:在[a,b]中是否存在常數(shù)c,使得f(c)=c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C在直角坐標(biāo)系xOy下的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(Ⅱ)直線l的極坐標(biāo)方程是ρcos(θ-$\frac{π}{6}$)=3$\sqrt{3}$,射線OT:θ=$\frac{π}{3}$(ρ>0)與曲線C交于A點(diǎn),與直線l交于B,求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{a^x},x≤1\\{x^2}-6x+7,x>1\end{array}\right.$(a>0,a≠1),若函數(shù)y=|f(x)|-ax有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(6-2$\sqrt{7}$,1)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知α,β為銳角,cos(${\frac{π}{2}$-α)=$\frac{3}{5}$,sin(${\frac{3π}{2}$+β)=-$\frac{5}{13}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(α)=$\frac{{sin(\frac{π}{2}-α)cos(10π-α)tan(-α+3π)}}{{tan(π+α)sin(\frac{5π}{2}+α)}}$.
(1)化簡(jiǎn)f(α);
(2)若α=-1860°,求f(α)的值;
(3)若α∈(0,$\frac{π}{2}$),且sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.知函數(shù)f(x)=$\frac{{x}^{2}}{{x}^{2}+1}$+ax為偶函數(shù).
(1)求a的值;
(2)用定義法證明函數(shù)f(x)在區(qū)間[0,+∞)上是增函數(shù);
(3)解關(guān)于x的不等式f(2x-1)<f(x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=(ax+b)lnx-bx+3在(1,f(1))處的切線方程為y=2.
(1)求a,b的值及函數(shù)f(x)的極值;
(2)證明:$\frac{ln2}{2}×\frac{ln3}{3}×\frac{ln4}{4}×…×\frac{lnn}{n}<\frac{1}{n}(n≥2,n∈N)$.

查看答案和解析>>

同步練習(xí)冊(cè)答案